Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2

被引:147
作者
Wang, Congjun [1 ,2 ]
Ranasingha, Oshadha [1 ,3 ]
Natesakhawat, Sittichai [1 ,4 ]
Ohodnicki, Paul R., Jr. [1 ]
Andio, Mark [1 ]
Lewis, James P. [1 ,3 ]
Matranga, Christopher [1 ]
机构
[1] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA
[2] URS Corp, South Pk, PA 15129 USA
[3] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA
[4] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA
关键词
METAL NANOPARTICLES; GOLD; WATER; OXIDE; ABSORPTION; OXIDATION; ENHANCEMENT; MECHANISMS; EXCITATION; COMPOSITE;
D O I
10.1039/c3nr02001k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic excitation of Au nanoparticles attached to the surface of ZnO catalysts using low power 532 nm laser illumination leads to significant heating of the catalyst and the conversion of CO2 and H-2 reactants to CH4 and CO products. Temperature-calibrated Raman spectra of ZnO phonons show that intensity-dependent plasmonic excitation can controllably heat Au-ZnO from 30 to similar to 600 degrees C and simultaneously tune the CH4 : CO product ratio. The laser induced heating and resulting CH4 : CO product distribution agrees well with predictions from thermodynamic models and temperature-programmed reaction experiments indicating that the reaction is a thermally driven process resulting from the plasmonic heating of the Au-ZnO. The apparent quantum yield for CO2 conversion under continuous wave (cw) 532 nm laser illumination is 0.030%. The Au-ZnO catalysts are robust and remain active after repeated laser exposure and cycling. The light intensity required to initiate CO2 reduction is low (similar to 2.5 x 10(5) W m(-2)) and achievable with solar concentrators. Our results illustrate the viability of plasmonic heating approaches for CO2 utilization and other practical thermal catalytic applications.
引用
收藏
页码:6968 / 6974
页数:7
相关论文
共 50 条
[1]   Heterogenous Catalysis Mediated by Plasmon Heating [J].
Adleman, James R. ;
Boyd, David A. ;
Goodwin, David G. ;
Psaltis, Demetri .
NANO LETTERS, 2009, 9 (12) :4417-4423
[2]   A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide [J].
Awazu, Koichi ;
Fujimaki, Makoto ;
Rockstuhl, Carsten ;
Tominaga, Junji ;
Murakami, Hirotaka ;
Ohki, Yoshimichi ;
Yoshida, Naoya ;
Watanabe, Toshiya .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (05) :1676-1680
[3]   Mapping Heat Origin in Plasmonic Structures [J].
Baffou, Guillaume ;
Girard, Christian ;
Quidant, Romain .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[4]  
Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
[5]   Plasmon-assisted chemical vapor deposition [J].
Boyd, David A. ;
Greengard, Leslie ;
Brongersma, Mark ;
El-Naggar, Mohamed Y. ;
Goodwin, David G. .
NANO LETTERS, 2006, 6 (11) :2592-2597
[6]   Noble Metal Nanocrystals: Plasmon Electron Transfer Photochemistry and Single-Molecule Raman Spectroscopy [J].
Brus, Louis .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) :1742-1749
[7]   Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals [J].
Buonsanti, Raffaella ;
Llordes, Anna ;
Aloni, Shaul ;
Helms, Brett A. ;
Milliron, Delia J. .
NANO LETTERS, 2011, 11 (11) :4706-4710
[8]   Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes [J].
Cao, Linyou ;
Barsic, David N. ;
Guichard, Alex R. ;
Brongersma, Mark L. .
NANO LETTERS, 2007, 7 (11) :3523-3527
[9]   Superheating Water by CW Excitation of Gold Nanodots [J].
Carlson, Michael T. ;
Green, Andrew J. ;
Richardson, Hugh H. .
NANO LETTERS, 2012, 12 (03) :1534-1537
[10]   Plasmon Inducing Effects for Enhanced Photoelectrochemical Water Splitting: X-ray Absorption Approach to Electronic Structures [J].
Chen, Hao Ming ;
Chen, Chih Kai ;
Chen, Chih-Jung ;
Cheng, Liang-Chien ;
Wu, Pin Chieh ;
Cheng, Bo Han ;
Ho, You Zhe ;
Tseng, Ming Lun ;
Hsu, Ying-Ya ;
Chan, Ting-Shan ;
Lee, Jyh-Fu ;
Liu, Ru-Shi ;
Tsai, Din Ping .
ACS NANO, 2012, 6 (08) :7362-7372