Current-conducting properties of paper consisting of multiwall carbon nanotubes

被引:2
作者
Tkachev, E. N. [1 ]
Buryakov, T. I. [2 ]
Kuznetsov, V. L. [3 ]
Moseenkov, S. I. [3 ]
Mazov, I. N. [3 ]
Popkov, S. I. [4 ]
Shaikhutdinov, K. A. [4 ]
机构
[1] Russian Acad Sci, Siberian Branch, Nikolaev Inst Inorgan Chem, Novosibirsk 630090, Russia
[2] Tomsk State Univ, Siberian Physicotech Inst, Tomsk 634050, Russia
[3] Russian Acad Sci, Siberian Branch, Boreskov Inst Catalysis, Novosibirsk 630090, Russia
[4] Russian Acad Sci, Siberian Branch, Kirensky Inst Phys, Krasnoyarsk 660036, Russia
基金
俄罗斯基础研究基金会;
关键词
ELECTRICAL-CONDUCTIVITY; ELECTRONIC-STRUCTURE; RESISTANCE;
D O I
10.1134/S1063776113050257
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Electrical conductivity sigma(T) of the paper consisting of multiwalled carbon nanotubes (MWCNTs) is studied in the temperature range 4.2-295 K, and its magnetoresistivity rho(B) at various temperatures in magnetic fields up to 9 T is analyzed. The temperature dependence of the paper electrical conductivity sigma(T) exhibits two-dimensional quantum corrections to the conductivity below 10 K. The dependences of negative magnetoresistivity rho(B) measured at various temperatures are used to estimate the wavefunction phase breakdown length L (phi) of conduction electrons and to obtain the temperature dependence L (phi) = constT (-p/2), where p a parts per thousand 1/3. Similar dependences of electrical conductivity sigma(T), magnetoresistivity rho(B), and phase breakdown length L (phi)(T) are detected for the initial MWCNTs used to prepare the paper.
引用
收藏
页码:860 / 865
页数:6
相关论文
共 24 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]  
Aliev AE, 2005, J COMMUN TECHNOL EL+, V50, P1074
[3]  
Altshuler BL., 1981, Sov. Phys. JETP, V54, P411
[4]   Conductive, mechanical, and chemical resistance properties of polyurushiol/multiwalled carbon nanotube composite coatings [J].
Bai, Weibin ;
Zhuo, Dongxian ;
Xiao, Xueqing ;
Xie, Junna ;
Lin, Jinhuo .
POLYMER COMPOSITES, 2012, 33 (05) :711-715
[5]   Determination of the intershell conductance in multiwalled carbon nanotubes -: art. no. 176806 [J].
Bourlon, B ;
Miko, C ;
Forró, L ;
Glattli, DC ;
Bachtold, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :176806-1
[6]   In situ manipulation and electrical characterization of multiwalled carbon nanotubes by using nanomanipulators under scanning electron microscopy [J].
Bussolotti, F. ;
D'Ortenzi, L. ;
Grossi, V. ;
Lozzi, L. ;
Santucci, S. ;
Passacantando, M. .
PHYSICAL REVIEW B, 2007, 76 (12)
[7]   Effects of nanodomain formation on the electronic structure of doped carbon nanotubes [J].
Carroll, DL ;
Redlich, P ;
Blase, X ;
Charlier, JC ;
Curran, S ;
Ajayan, PM ;
Roth, S ;
Ruhle, M .
PHYSICAL REVIEW LETTERS, 1998, 81 (11) :2332-2335
[8]   Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes [J].
Dai, HJ ;
Wong, EW ;
Lieber, CM .
SCIENCE, 1996, 272 (5261) :523-526
[9]   Direct measurement of resistance of multiwalled carbon nanotubes using micro four-point probes [J].
Dohn, S ;
Molhave, K ;
Boggild, P .
SENSOR LETTERS, 2005, 3 (04) :300-303
[10]   Electrical conductivity of individual carbon nanotubes [J].
Ebbesen, TW ;
Lezec, HJ ;
Hiura, H ;
Bennett, JW ;
Ghaemi, HF ;
Thio, T .
NATURE, 1996, 382 (6586) :54-56