Computing the Expected Edit Distance from a String to a PFA

被引:1
作者
Calvo-Zaragoza, Jorge [1 ]
de la Higuera, Colin [2 ]
Oncina, Jose [1 ]
机构
[1] Univ Alicante, DLSI, Alicante, Spain
[2] Univ Nantes, LINA Lab, UMR 6241, Nantes, France
来源
Implementation and Application of Automata | 2016年 / 9705卷
关键词
Edit distance; Probabilistic finite state automata;
D O I
10.1007/978-3-319-40946-7_4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In a number of fields one is to compare a witness string with a distribution. One possibility is to compute the probability of the string for that distribution. Another, giving a more global view, is to compute the expected edit distance from a string randomly drawn to the witness string. This number is often used to measure the performance of a prediction, the goal then being to return the median string, or the string with smallest expected distance. To be able to measure this, computing the distance between a hypothesis and that distribution is necessary. This paper proposes two solutions for computing this value, when the distribution is defined with a probabilistic finite state automaton. The first is exact but has a cost which can be exponential in the length of the input string, whereas the second is a FPRAS.
引用
收藏
页码:39 / 50
页数:12
相关论文
共 50 条
[31]   Swap and mismatch edit distance [J].
Amihood Amir ;
Estrella Eisenberg ;
Ely Porat .
Algorithmica, 2006, 45 :109-120
[32]   Convolutional Embedding for Edit Distance [J].
Dai, Xinyan ;
Yan, Xiao ;
Zhou, Kaiwen ;
Wang, Yuxuan ;
Yang, Han ;
Cheng, James .
PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, :599-608
[33]   Edit Distance with Block Deletions [J].
Shapira, Dana ;
Storer, James A. .
ALGORITHMS, 2011, 4 (01) :40-60
[34]   The Smoothed Complexity of Edit Distance [J].
Andoni, Alexandr ;
Krauthgamer, Robert .
ACM TRANSACTIONS ON ALGORITHMS, 2012, 8 (04)
[35]   Homomorphic Computation of Edit Distance [J].
Cheon, Jung Hee ;
Kim, Miran ;
Lauter, Kristin .
FINANCIAL CRYPTOGRAPHY AND DATA SECURITY (FC 2015), 2015, 8976 :194-212
[36]   On the computation of edit distance functions [J].
Martin, Ryan R. .
DISCRETE MATHEMATICS, 2015, 338 (02) :291-305
[37]   The edit distance function and symmetrization [J].
Martin, Ryan .
ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (03)
[38]   Bayesian graph edit distance [J].
Myers, R ;
Wilson, RC ;
Hancock, ER .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (06) :628-635
[39]   Edit distance with move operations [J].
Shapira, Dana ;
Storer, James A. .
JOURNAL OF DISCRETE ALGORITHMS, 2007, 5 (02) :380-392
[40]   On the edit distance of powers of cycles [J].
Berikkyzy, Zhanar ;
Martin, Ryan R. ;
Peck, Chelsea .
DISCRETE MATHEMATICS, 2019, 342 (10) :2804-2817