Personalized machine learning approach to predict candidemia in medical wards

被引:19
作者
Ripoli, Andrea [1 ]
Sozio, Emanuela [2 ]
Sbrana, Francesco [3 ,4 ]
Bertolino, Giacomo [5 ,6 ]
Pallotto, Carlo [7 ,8 ]
Cardinali, Gianluigi [9 ,10 ]
Meini, Simone [11 ]
Pieralli, Filippo [12 ]
Azzini, Anna Maria [13 ]
Concia, Ercole [13 ]
Viaggi, Bruno [14 ]
Tascini, Carlo [15 ]
机构
[1] Fdn Toscana Gabriele Monasterio, Bioengn Dept, Pisa, Italy
[2] Spedali Riuniti Livorno, Tuscany Hlth Care, Emergency Dept, Livorno, Italy
[3] Fdn Toscana Gabriele Monasterio, UO Lipoapheresis, Via Moruzzi 1, I-56124 Pisa, Italy
[4] Fdn Toscana Gabriele Monasterio, Ctr Inherited Dyslipidemias, Via Moruzzi 1, I-56124 Pisa, Italy
[5] ASSL Cagliari, Pharmaceut Dept, Cagliari, Italy
[6] Univ Cagliari, Dept Med Sci & Publ Hlth, Cagliari, Italy
[7] Osped San Donato Arezzo, Tuscany Hlth Care, UOC Malattie Infett, Arezzo, Italy
[8] Univ Perugia, Dipartimento Med, Sez Malattie Infett, Perugia, Italy
[9] Univ Perugia, Dept Pharmaceut Sci Microbiol, Perugia, Italy
[10] Univ Perugia, Ctr Excellence Nanostruct Innovat Mat, Dept Chem Biol & Biotechnol, CEMIN, Perugia, Italy
[11] Santa Maria Annunziata Hosp, Internal Med Unit, Florence, Italy
[12] Azienda Osped Univ Careggi, Intermediate Care Unit, Florence, Italy
[13] Univ Verona, Sez Malattie Infett, Dipartimento Diagnost & Sanita Pubbl, Verona, Italy
[14] Careggi Universital Hosp, Dept Anesthesia, Neuro Intens Care Unit, Florence, Italy
[15] Azienda Osped Colli, Div Infect Dis 1, Cotugno Hosp, Naples, Italy
关键词
Candidemia; Machine learning; Medical ward; Septic patients; CRITICALLY-ILL PATIENTS; BLOOD-STREAM INFECTION; RISK-FACTORS; NOSOCOMIAL CANDIDEMIA; INVASIVE CANDIDIASIS; ATTRIBUTABLE MORTALITY; TERTIARY-CARE; EPIDEMIOLOGY; CANDIDAEMIA; CATHETER;
D O I
10.1007/s15010-020-01488-3
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Purpose Candidemia is a highly lethal infection; several scores have been developed to assist the diagnosis process and recently different models have been proposed. Aim of this work was to assess predictive performance of a Random Forest (RF) algorithm for early detection of candidemia in the internal medical wards (IMWs). Methods A set of 42 potential predictors was acquired in a sample of 295 patients (male: 142, age: 72 +/- 15 years; candidemia: 157/295; bacteremia: 138/295). Using tenfold cross-validation, a RF algorithm was compared with a classic stepwise multivariable logistic regression model; discriminative performance was assessed by C-statistics, sensitivity and specificity, while calibration was evaluated by Hosmer-Lemeshow test. Results The best tuned RF algorithm demonstrated excellent discrimination (C-statistics = 0.874 +/- 0.003, sensitivity = 84.24% +/- 0.67%, specificity = 91% +/- 2.63%) and calibration (Hosmer-Lemeshow statistics = 12.779 +/- 1.369,p = 0.120), markedly greater than the ones guaranteed by the classic stepwise logistic regression (C-statistics = 0.829 +/- 0.011, sensitivity = 80.21% +/- 1.67%, specificity = 84.81% +/- 2.68%; Hosmer-Lemeshow statistics = 38.182 +/- 15.983,p < 0.001). In addition, RF suggests a major role of in-hospital antibiotic treatment with microbioma highly impacting antimicrobials (MHIA) that are found as a fundamental risk of candidemia, further enhanced by TPN. When in-hospital MHIA therapy is not performed, PICC is the dominant risk factor for candidemia, again enhanced by TPN. When PICC is not used and MHIA therapy is not performed, the risk of candidemia is minimum, slightly increased by in-hospital antibiotic therapy. Conclusion RF accurately estimates the risk of candidemia in patients admitted to IMWs. Machine learning technique might help to identify patients at high risk of candidemia, reduce the delay in empirical treatment and improve appropriateness in antifungal prescription.
引用
收藏
页码:749 / 759
页数:11
相关论文
共 51 条
[1]   Predicting candidemia in the internal medicine wards: a comparison with gram-negative-bacteremia-a retrospectives study [J].
Atamna, Alaa ;
Eliakim-Raz, Noa ;
Mohana, Jenan ;
Ben-Zvi, Haim ;
Sorek, Nadav ;
Shochat, Tzippy ;
Bishara, Jihad .
DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, 2019, 95 (01) :80-83
[2]   Candidaemia in internal medicine departments: the burden of a rising problem [J].
Bassetti, M. ;
Molinari, M. P. ;
Mussap, M. ;
Viscoli, C. ;
Righi, E. .
CLINICAL MICROBIOLOGY AND INFECTION, 2013, 19 (06) :E281-E284
[3]   Epidemiology, Species Distribution, Antifungal Susceptibility and Outcome of Nosocomial Candidemia in a Tertiary Care Hospital in Italy [J].
Bassetti, Matteo ;
Taramasso, Lucia ;
Nicco, Elena ;
Molinari, Maria Pia ;
Mussap, Michele ;
Viscoli, Claudio .
PLOS ONE, 2011, 6 (09)
[4]   Epidemiology, Species Distribution, Antifungal Susceptibility, and Outcome of Candidemia across Five Sites in Italy and Spain [J].
Bassetti, Matteo ;
Merelli, Maria ;
Righi, Elda ;
Diaz-Martin, Ana ;
Maria Rosello, Eva ;
Luzzati, Roberto ;
Parra, Anna ;
Trecarichi, Enrico Maria ;
Sanguinetti, Maurizio ;
Posteraro, Brunella ;
Garnacho-Montero, Jose ;
Sartor, Assunta ;
Rello, Jordi ;
Tumbarello, Mario .
JOURNAL OF CLINICAL MICROBIOLOGY, 2013, 51 (12) :4167-4172
[5]   GENOTYPIC VARIATION AND SLIME PRODUCTION AMONG BLOOD AND CATHETER ISOLATES OF CANDIDA-PARAPSILOSIS [J].
BRANCHINI, ML ;
PFALLER, MA ;
RHINECHALBERG, J ;
FREMPONG, T ;
ISENBERG, HD .
JOURNAL OF CLINICAL MICROBIOLOGY, 1994, 32 (02) :452-456
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Changes in Incidence and Antifungal Drug Resistance in Candidemia: Results From Population-Based Laboratory Surveillance in Atlanta and Baltimore, 2008-2011 [J].
Cleveland, Angela Ahlquist ;
Farley, Monica M. ;
Harrison, Lee H. ;
Stein, Betsy ;
Hollick, Rosemary ;
Lockhart, Shawn R. ;
Magill, Shelley S. ;
Derado, Gordana ;
Park, Benjamin J. ;
Chiller, Tom M. .
CLINICAL INFECTIOUS DISEASES, 2012, 55 (10) :1352-1361
[8]   From ESKAPE to ESCAPE, From KPC to CCC [J].
De Rosa, Francesco G. ;
Corcione, Silvia ;
Pagani, Nicole ;
Di Perri, Giovanni .
CLINICAL INFECTIOUS DISEASES, 2015, 60 (08) :1289-U197
[9]   Mortality in patients with early- or late-onset candidaemia [J].
De Rosa, Francesco Giuseppe ;
Trecarichi, Enrico Maria ;
Montrucchio, Chiara ;
Losito, Angela Raffaella ;
Raviolo, Stefania ;
Posteraro, Brunella ;
Corcione, Silvia ;
Di Giambenedetto, Simona ;
Fossati, Lucina ;
Sanguinetti, Maurizio ;
Serra, Roberto ;
Cauda, Roberto ;
Di Perri, Giovanni ;
Tumbarello, Mario .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2013, 68 (04) :927-935
[10]  
Dellinger RP, 2012, INTENS CARE MED, V39, P165, DOI DOI 10.1007/s00134-012-2769-8