On the variation of maximal operators of convolution type

被引:42
作者
Cameiro, Emanuel [1 ]
Svaiter, Benar F. [1 ]
机构
[1] Inst Matematica Pura & Aplicada, BR-22460 Rio De Janeiro, Brazil
关键词
Maximal functions; Heat flow; Poisson kernel; Sobolev spaces; Regularity; Bounded variation; Discrete operators; SOBOLEV SPACES; REGULARITY; THEOREM;
D O I
10.1016/j.jfa.2013.05.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the regularity properties of two maximal operators of convolution type: the heat flow maximal operator (associated to the Gauss kernel) and the Poisson maximal operator (associated to the Poisson kernel). In dimension d = 1 we prove that these maximal operators do not increase the L-P-variation of a function for any p >= 1, while in dimensions d > 1 we obtain the corresponding results for the L-2-variation. Similar results are proved for the discrete versions of these operators. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:837 / 865
页数:29
相关论文
共 17 条
[1]   Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities [J].
Aldaz, J. M. ;
Perez Lazaro, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (05) :2443-2461
[2]   Optimal Bounds on the Modulus of Continuity of the Uncentered Hardy-Littlewood Maximal Function [J].
Aldaz, J. M. ;
Colzani, L. ;
Perez Lazaro, J. .
JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (01) :132-167
[3]   ON A DISCRETE VERSION OF TANAKA'S THEOREM FOR MAXIMAL FUNCTIONS [J].
Bober, Jonathan ;
Carneiro, Emanuel ;
Hughes, Kevin ;
Pierce, Lillian B. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (05) :1669-1680
[4]  
Carneiro E., 2013, MATH RES LE IN PRESS
[5]   On the regularity of maximal operators [J].
Carneiro, Emanuel ;
Moreira, Diego .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) :4395-4404
[6]  
Hajlasz P, 2004, ANN ACAD SCI FENN-M, V29, P167
[7]  
Hajlasz P, 2010, P AM MATH SOC, V138, P165
[8]  
Karlsson A, 2006, CONTEMP MATH, V394, P177
[9]   Regularity of the fractional maximal function [J].
Kinnunen, J ;
Saksman, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :529-535
[10]   The Hardy-Littlewood maximal function of a Sobolev function [J].
Kinnunen, J .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 100 (1) :117-124