Real Lie algebras of differential operators and quasi-exactly solvable potentials

被引:17
作者
GonzalezLopez, A
Kamran, N
Olver, P
机构
[1] MCGILL UNIV, DEPT MATH, MONTREAL, PQ H3A 2K6, CANADA
[2] UNIV MINNESOTA, SCH MATH, MINNEAPOLIS, MN 55455 USA
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1996年 / 354卷 / 1710期
关键词
D O I
10.1098/rsta.1996.0044
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We first establish some general results connecting real and complex Lie algebras of first-order differential operators. These are applied to completely classify all finite-dimensional real Lie algebras of first-order differential operators in R(2). Furthermore, ave find all algebras which are quasi-exactly solvable, along with the associated finite-dimensional modules of analytic functions. The resulting real Lie algebras are used to construct new quasi-exactly solvable Schrodinger operators on R(2).
引用
收藏
页码:1165 / 1193
页数:29
相关论文
共 32 条
[1]  
ADAMS BG, 1988, ADV QUANTUM CHEM, V19, P1
[2]  
[Anonymous], GESAMMELTE ABHANDLUN
[3]  
[Anonymous], SOPHUS LIES 1880 TRA
[4]  
[Anonymous], GESAMMELTE ABH
[5]  
Barut A, 1988, DYNAMICAL GROUPS SPE, DOI [10.1142/0299, DOI 10.1142/0299]
[6]   DYNAMICAL GROUPS AND MASS FORMULA [J].
BARUT, AO ;
BOHM, A .
PHYSICAL REVIEW, 1965, 139 (4B) :1107-&
[7]  
BOHM A, 1988, DYNAMICAL GROUPS SPE, P3
[8]   SERIES OF HADRON ENERGY LEVELS AS REPRESENTATIONS OF NON-COMPACT GROUPS [J].
DOTHAN, Y ;
GELLMANN, M ;
NEEMAN, Y .
PHYSICS LETTERS, 1965, 17 (02) :148-&
[9]   QUASI-EXACTLY SOLVABLE LIE-ALGEBRAS OF DIFFERENTIAL-OPERATORS IN 2 COMPLEX-VARIABLES [J].
GONZALEZLOPEZ, A ;
KAMRAN, N ;
OLVER, PJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (17) :3995-4008
[10]  
GONZALEZLOPEZ A, 1993, CR ACAD SCI I-MATH, V316, P1307