Multiplication in the cohomology of Grassmannians via Grobner bases

被引:6
作者
Petrovic, Zoran Z. [1 ]
Prvulovic, Branislav I. [1 ]
Radovanovic, Marko [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade, Serbia
关键词
Cohomology of Grassmannians; Grobner bases; Kostka numbers; Chem classes; Stiefel - Whitney classes; Schubert classes; Pieri's formula; Immersions; MANIFOLDS; IMMERSION;
D O I
10.1016/j.jalgebra.2015.04.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In order to gain better understanding of the multiplication in the integral cohomology of the complex Grossmann manifold G(k,n) (C) (in the Borel picture) a minimal strong Grobner basis for the ideal I-k,I-n determining this cohomology is obtained. These results are applied to obtain recurrence relations among Kostka numbers which completely determine these numbers. Corresponding results for real Grossmann manifolds are also presented. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:60 / 84
页数:25
相关论文
共 15 条
[1]  
ADAMS W, 1994, GRAD STUD MATH, V3
[3]  
Cohen R., 1985, ANN MATH, V22, P237
[4]   On the inverse Kostka matrix [J].
Duan, HB .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 103 (02) :363-376
[5]  
Egecioglu O., 1990, Linear and Multilinear Algebra, V26, P59
[6]   GROBNER BASES OF ORIENTED GRASSMANN MANIFOLDS [J].
Fukaya, Tomohiro .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2008, 10 (02) :195-209
[7]   IMMERSION DIMENSION FOR REAL GRASSMANNIANS [J].
HILLER, H ;
STONG, RE .
MATHEMATISCHE ANNALEN, 1981, 255 (03) :361-367
[8]  
MANIVEL L, 1998, SMF AMS TEXTS MONOGR, V6
[9]  
Milnor J. W., 1974, ANN MATH STUD, V76
[10]  
Monks KG, 2001, BOL SOC MAT MEX, V7, P123