Oil Prices Forecasting Using Modified Support Vector Machines

被引:0
作者
Lu Lin [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Management, Guilin, Peoples R China
来源
PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON RISK MANAGEMENT & ENGINEERING MANAGEMENT, VOLS 1 AND 2 | 2008年
关键词
support vector machines; oil prices; particle swarm optimization;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
Oil is a kind of basis energy, its price fluctuations have an important impact on the operation of the world economy. AS the non-linear features of world oil prices, the paper uses support vector machines(SVM) technology for the oil price forecast. The method can be effective in the data space of the evolution operating of various non-linear to the corresponding linear operation in characteristics space, thereby greatly enhancing its ability to handle non-linear. To solve the problems of SVM in training for large-scale convergence, such as slow convergence, greet complexity, particle swarm optimization(PSO) is proposed for the secondary planning problem to enhance SVM computing speed. The modified SVM is applied to oil prices forecast, empirical studies show that the method has a high prediction accuracy and faster computing speed.
引用
收藏
页码:529 / 532
页数:4
相关论文
共 50 条
  • [41] Power Load Forecasting Based on the Locally Weighted Support Vector Machines
    Cai Yongming
    Zhao Shuhai
    MANAGEMENT ENGINEERING AND APPLICATIONS, 2010, : 383 - 387
  • [42] Wind direction forecasting with artificial neural networks and support vector machines
    Tagliaferri, F.
    Viola, I. M.
    Flay, R. G. J.
    OCEAN ENGINEERING, 2015, 97 : 65 - 73
  • [43] Effective training of support vector machines using extractive support vector algorithm
    Yao, Chih-Chia
    Yu, Pao-Ta
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 1808 - +
  • [44] Detecting Ransomware using Support Vector Machines
    Takeuchi, Yuki
    Sakai, Kazuya
    Fukumoto, Satoshi
    47TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP '18), 2018,
  • [45] Feature Extraction Using Support Vector Machines
    Tajiri, Yasuyuki
    Yabuwaki, Ryosuke
    Kitamura, Takuya
    Abe, Shigeo
    NEURAL INFORMATION PROCESSING: MODELS AND APPLICATIONS, PT II, 2010, 6444 : 108 - 115
  • [46] Evapotranspiration modelling using support vector machines
    Kisi, Ozgur
    Cimen, Mesut
    HYDROLOGICAL SCIENCES JOURNAL, 2009, 54 (05) : 918 - 928
  • [47] Seismic detection using support vector machines
    Ruano, A. E.
    Madureira, G.
    Barros, O.
    Khosravani, H. R.
    Ruano, M. G.
    Ferreira, P. M.
    NEUROCOMPUTING, 2014, 135 : 273 - 283
  • [48] Forecast of Temperature using Support Vector Machines
    Perez-Vega, Abrahan
    Travieso, Carlos M.
    Hernandez-Travieso, Jose G.
    Alonso, Jesus B.
    Dutta, Malay Kishore
    Singh, Anushikha
    2016 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), 2016, : 388 - 392
  • [49] Classification of Performers using Support Vector Machines
    Reljin, Natasa
    Pokrajac, Dragoljub
    NEUREL 2008: NINTH SYMPOSIUM ON NEURAL NETWORK APPLICATIONS IN ELECTRICAL ENGINEERING, PROCEEDINGS, 2008, : 156 - +
  • [50] RECOGNITION OF REPETITIONS USING SUPPORT VECTOR MACHINES
    Palfy, Juraj
    Pospichal, Jiri
    SPA 2011: SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS CONFERENCE PROCEEDINGS, 2011, : 79 - 84