Neutron Imaging and Learning Algorithms: New Perspectives in Cultural Heritage Applications

被引:7
作者
Scatigno, Claudia [1 ]
Festa, Giulia [1 ]
机构
[1] CREF Museo Stor Fis, Via Panisperna 89a, I-00189 Rome, Italy
关键词
data analysis; imaging; cultural heritage; Deep Learning; convolutional neural networks; segmentation; SPATIAL-RESOLUTION; CNN;
D O I
10.3390/jimaging8100284
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Recently, learning algorithms such as Convolutional Neural Networks have been successfully applied in different stages of data processing from the acquisition to the data analysis in the imaging context. The aim of these algorithms is the dimensionality of data reduction and the computational effort, to find benchmarks and extract features, to improve the resolution, and reproducibility performances of the imaging data. Currently, no Neutron Imaging combined with learning algorithms was applied on cultural heritage domain, but future applications could help to solve challenges of this research field. Here, a review of pioneering works to exploit the use of Machine Learning and Deep Learning models applied to X-ray imaging and Neutron Imaging data processing is reported, spanning from biomedicine, microbiology, and materials science to give new perspectives on future cultural heritage applications.
引用
收藏
页数:11
相关论文
共 69 条
[1]   QAIS-DSNN: Tumor Area Segmentation of MRI Image with Optimized Quantum Matched-Filter Technique and Deep Spiking Neural Network [J].
Ahmadi, Mohsen ;
Sharifi, Abbas ;
Hassantabar, Shayan ;
Enayati, Saman .
BIOMED RESEARCH INTERNATIONAL, 2021, 2021
[2]   Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation [J].
Amyar, Amine ;
Modzelewski, Romain ;
Li, Hua ;
Ruan, Su .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 126
[3]   A neutron study of sealed pottery from the grave goods of Kha and Merit [J].
Andreani, C. ;
Aliotta, F. ;
Arcidiacono, L. ;
Borla, M. ;
Di Martino, D. ;
Facchetti, F. ;
Ferraris, E. ;
Festa, G. ;
Gorini, G. ;
Kockelmann, W. ;
Kelleher, J. ;
Malfitana, D. ;
Micieli, D. ;
Minniti, T. ;
Cippo, E. Perelli ;
Ponterio, R. ;
Salvato, G. ;
Senesi, R. ;
Turina, V. ;
Vasi, C. ;
Greco, C. .
JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2017, 32 (07) :1342-1347
[4]   Deep learning approach for an interface structure analysis with a large statistical noise in neutron reflectometry [J].
Aoki, Hiroyuki ;
Liu, Yuwei ;
Yamashita, Takashi .
SCIENTIFIC REPORTS, 2021, 11 (01)
[5]   SVM-based writer retrieval system in handwritten document images [J].
Bouibed, Mohamed Lamine ;
Nemmour, Hassiba ;
Chibani, Youcef .
MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (16) :22629-22651
[6]   Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation [J].
Brosch, Tom ;
Tang, Lisa Y. W. ;
Yoo, Youngjin ;
Li, David K. B. ;
Traboulsee, Anthony ;
Tam, Roger .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1229-1239
[7]   Deep Convolutional Encoder Networks for Multiple Sclerosis Lesion Segmentation [J].
Brosch, Tom ;
Yoo, Youngjin ;
Tang, Lisa Y. W. ;
Li, David K. B. ;
Traboulsee, Anthony ;
Tam, Roger .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :3-11
[8]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[9]   Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition [J].
Cao, Yongqiang ;
Chen, Yang ;
Khosla, Deepak .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 113 (01) :54-66
[10]  
Chitradevi B., 2014, INT J INNOV RES COMP, V2, P6466