Asynchronous multi-sensor tracking in clutter with uncertain sensor locations using Bayesian sequential Monte Carlo methods

被引:15
|
作者
Marrs, AD [1 ]
机构
[1] Def Evaluat & Res Agcy, Signal Proc & Imagery Dept, Malvern, Worcs, England
来源
2001 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-7 | 2001年
关键词
D O I
10.1109/AERO.2001.931173
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents the development of a tracking algorithm for multi-sensor single target tracking in the presence of asynchronous or missing measurements and high clutter levels. The algorithm is based upon the random sample representation of state pdfs and uses sequential Monte Carlo or "particle" filtering methods to perform prediction and update. The performance of the algorithm is illustrated on the challenging problem of naval subsurface target tracking using multiple drifting sonobuoys of the DIFAR type. Good performance was demonstrated on simulated scenarios with a high level of uncertainty represented by unknown sensor location, 20% missing measurements and 70% clutter.
引用
收藏
页码:2171 / 2178
页数:8
相关论文
共 50 条
  • [31] Fusion of Laser and Radar Sensor Data with a Sequential Monte Carlo Bayesian Occupancy Filter
    Nuss, Dominik
    Yuan, Ting
    Krehl, Gunther
    Stuebler, Manuel
    Reuter, Stephan
    Dietmayer, Klaus
    2015 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2015, : 1074 - 1081
  • [32] Sequential Monte Carlo Localization Methods in Mobile Wireless Sensor Networks: A Review
    Abu Znaid, Ammar M. A.
    Idris, Mohd Yamani Idna
    Wahab, Ainuddin Wahid Abdul
    Qabajeh, Liana Khamis
    Mahdi, Omar Adil
    JOURNAL OF SENSORS, 2017, 2017
  • [33] Multitarget initiation, tracking and termination using Bayesian Monte Carlo methods
    Ng, William
    Li, Jack
    Godsill, Simon
    Pang, Sze Kim
    COMPUTER JOURNAL, 2007, 50 (06): : 674 - 693
  • [34] Online multitarget detection and tracking using sequential Monte Carlo methods
    Li, J
    Ng, W
    Godsill, S
    Vermaak, J
    2005 7TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), VOLS 1 AND 2, 2005, : 115 - 121
  • [35] Multisensor fusion for target tracking using sequential Monte Carlo methods
    Vemula, Mahesh
    Djuric, Petar M.
    2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2, 2005, : 1223 - 1227
  • [36] Tracking variable number of targets using sequential Monte Carlo methods
    Ng, William
    Li, Jack
    Godsill, Simon
    Vermaak, Jaco
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 1207 - 1211
  • [37] Pulse pressure variation tracking using sequential Monte Carlo methods
    Kim, Sunghan
    Aboy, Mateo
    McNames, James
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2013, 8 (04) : 333 - 340
  • [38] Time-varying bias estimation for asynchronous multi-sensor multi-target tracking systems using STF
    Hu, Y. (huyy06@mails.tsinghua.edu.cn), 1600, Chinese Institute of Electronics (22):
  • [39] Time-varying Bias Estimation for Asynchronous Multi-sensor Multi-target Tracking Systems Using STF
    Hu Yanyan
    Zhou Donghua
    CHINESE JOURNAL OF ELECTRONICS, 2013, 22 (03): : 525 - 529
  • [40] An Asynchronous RGB-D Sensor Fusion Framework Using Monte-Carlo Methods for Hand Tracking on a Mobile Robot in Crowded Environments
    McKeague, Stephen
    Liu, Jindong
    Yang, Guang-Zhong
    SOCIAL ROBOTICS, ICSR 2013, 2013, 8239 : 491 - 500