DualBoost : Handling Missing Values with Feature Weights and Weak Classifiers that Abstain

被引:3
|
作者
Wang, Weihong [1 ]
Xu, Jie [1 ]
Wang, Yang [1 ]
Cai, Chen [1 ]
Chen, Fang [1 ]
机构
[1] CSIRO, Data61, Sydney, NSW, Australia
来源
CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT | 2018年
关键词
Boosting; missing values; feature weights; weak classifiers that abstain;
D O I
10.1145/3269206.3269319
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Missing values in real world datasets are a common issue. Handling missing values is one of the most key aspects in data mining, as it can seriously impact the performance of predictive models. In this paper we proposed a unified Boosting framework that consolidates model construction and missing value handling. At each Boosting iteration, weights are assigned to both the samples and features. The sample weights make difficult samples become the learning focus, while the feature weights enable critical features to be compensated by less critical features when they are unavailable. A weak classifier that abstains (i.e, produce no prediction when required feature value is missing) is learned on a data subset determined by the feature weights. Experimental results demonstrate the efficacy and robustness of the proposed method over existing Boosting algorithms.
引用
收藏
页码:1543 / 1546
页数:4
相关论文
共 50 条
  • [11] Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis
    Josse, Julie
    Chavent, Marie
    Liquet, Benot
    Husson, Francois
    JOURNAL OF CLASSIFICATION, 2012, 29 (01) : 91 - 116
  • [12] Handling Missing Values in Local Post-hoc Explainability
    Cinquini, Martina
    Giannotti, Fosca
    Guidotti, Riccardo
    Mattei, Andrea
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT II, 2023, 1902 : 256 - 278
  • [13] XGBoost in handling missing values for life insurance risk prediction
    Rusdah, Deandra Aulia
    Murfi, Hendri
    SN APPLIED SCIENCES, 2020, 2 (08):
  • [14] HANDLING MISSING VALUES VIA A NEURAL SELECTIVE INPUT MODEL
    Lopes, Noel
    Ribeiro, Bernardete
    NEURAL NETWORK WORLD, 2012, 22 (04) : 357 - 370
  • [15] Handling missing values in kernel methods with application to microbiology data
    Belanche, Lluis A.
    Kobayashi, Vladimer
    Aluja, Tomas
    NEUROCOMPUTING, 2014, 141 : 110 - 116
  • [16] Handling missing values in exploratory multivariate data analysis methods
    Josse, Julie
    Husson, Francois
    JOURNAL OF THE SFDS, 2012, 153 (02): : 79 - 99
  • [17] Adjusted weight voting algorithm for random forests in handling missing values
    Xia, Jing
    Zhang, Shengyu
    Cai, Guolong
    Li, Li
    Pan, Qing
    Yan, Jing
    Ning, Gangmin
    PATTERN RECOGNITION, 2017, 69 : 52 - 60
  • [18] JUST COMPRESS AND RELAX: HANDLING MISSING VALUES IN BIG TENSOR ANALYSIS
    Marcos, J. H.
    Sidiropoulos, N. D.
    2014 6TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING (ISCCSP), 2014, : 218 - 221
  • [19] Decision tree: Compatibility of techniques for handling missing values at training and testing
    Gavankar S.
    Sawarkar S.
    2016, UK Simulation Society, Clifton Lane, Nottingham, NG11 8NS, United Kingdom (17): : 10.1 - 10.7
  • [20] A Primer of Data Cleaning in Quantitative Research: Handling Missing Values and Outliers
    Sharifnia, Amir Masoud
    Kpormegbey, Daniel Edem
    Thapa, Deependra Kaji
    Cleary, Michelle
    JOURNAL OF ADVANCED NURSING, 2025,