DualBoost : Handling Missing Values with Feature Weights and Weak Classifiers that Abstain

被引:3
|
作者
Wang, Weihong [1 ]
Xu, Jie [1 ]
Wang, Yang [1 ]
Cai, Chen [1 ]
Chen, Fang [1 ]
机构
[1] CSIRO, Data61, Sydney, NSW, Australia
来源
CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT | 2018年
关键词
Boosting; missing values; feature weights; weak classifiers that abstain;
D O I
10.1145/3269206.3269319
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Missing values in real world datasets are a common issue. Handling missing values is one of the most key aspects in data mining, as it can seriously impact the performance of predictive models. In this paper we proposed a unified Boosting framework that consolidates model construction and missing value handling. At each Boosting iteration, weights are assigned to both the samples and features. The sample weights make difficult samples become the learning focus, while the feature weights enable critical features to be compensated by less critical features when they are unavailable. A weak classifier that abstains (i.e, produce no prediction when required feature value is missing) is learned on a data subset determined by the feature weights. Experimental results demonstrate the efficacy and robustness of the proposed method over existing Boosting algorithms.
引用
收藏
页码:1543 / 1546
页数:4
相关论文
共 50 条
  • [1] Granular computing: Granular classifiers and missing values
    Polkowski, Lech
    Artiemjew, Piotr
    PROCEEDINGS OF THE SIXTH IEEE INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS, 2007, : 186 - +
  • [2] Fuzzy based Techniques for Handling Missing Values
    El-Bakry, Malak
    El-Kilany, Ayman
    Mazen, Sherif
    Ali, Farid
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (03) : 50 - 55
  • [3] Handling missing values in the MDS-UPDRS
    Goetz, Christopher G.
    Luo, Sheng
    Wang, Lu
    Tilley, Barbara C.
    LaPelle, Nancy R.
    Stebbins, Glenn T.
    MOVEMENT DISORDERS, 2015, 30 (12) : 1632 - 1638
  • [4] Handling missing values in Principal Component Analysis
    Josse, Julie
    Husson, Francois
    Pages, Jerome
    JOURNAL OF THE SFDS, 2009, 150 (02): : 28 - 51
  • [5] Missing values handling for machine learning portfolios
    Chen, Andrew Y.
    McCoy, Jack
    JOURNAL OF FINANCIAL ECONOMICS, 2024, 155
  • [6] Handling Missing Values with Automatic Threshold Selection
    Yin, Xuri
    ICAIE 2009: PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND EDUCATION, VOLS 1 AND 2, 2009, : 36 - 40
  • [7] Handling missing values in multiple factor analysis
    Husson, Francois
    Josse, Julie
    FOOD QUALITY AND PREFERENCE, 2013, 30 (02) : 77 - 85
  • [8] Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis
    Julie Josse
    Marie Chavent
    Benot Liquet
    François Husson
    Journal of Classification, 2012, 29 : 91 - 116
  • [9] missMDA: A Package for Handling Missing Values in Multivariate Data Analysis
    Josse, Julie
    Husson, Francois
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 70 (01):
  • [10] XGBoost in handling missing values for life insurance risk prediction
    Deandra Aulia Rusdah
    Hendri Murfi
    SN Applied Sciences, 2020, 2