INHOMOGENEOUS RANDOM GRAPHS, ISOLATED VERTICES, AND POISSON APPROXIMATION

被引:14
作者
Penrose, Mathew D. [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
Inhomogeneous random graph; random connection model; stochastic block model; latent variable model; random geometric graph; Poisson approximation; Stein's method; U-statistic; RANDOM GEOMETRIC GRAPHS; NETWORK MODELS; CONNECTIVITY; EXTREMES;
D O I
10.1017/jpr.2018.9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a graph on randomly scattered points in an arbitrary space, with any two points x, y connected with probability phi(x, y). Suppose the number of points is large but the mean number of isolated points is O(1). We give general criteria for the latter to be approximately Poisson distributed. More generally, we consider the number of vertices of fixed degree, the number of components of fixed order, and the number of edges. We use a general result on Poisson approximation by Stein's method for a set of points selected from a Poisson point process. This method also gives a good Poisson approximation for U-statistics of a Poisson process.
引用
收藏
页码:112 / 136
页数:25
相关论文
共 27 条
[1]  
[Anonymous], 1999, SYS CON FDN
[2]  
BARBOUR AD, 1992, OXFORD STUDIES PROB, V2
[3]   NOVEL SCALING LIMITS FOR CRITICAL INHOMOGENEOUS RANDOM GRAPHS [J].
Bhamidi, Shankar ;
van der Hofstad, Remco ;
van Leeuwaarden, Johan S. H. .
ANNALS OF PROBABILITY, 2012, 40 (06) :2299-2361
[4]  
Bollobas B., 2001, CAMB STUDIES ADV MAT, V73
[5]   The phase transition in inhomogeneous random graphs [J].
Bollobas, Bela ;
Janson, Svante ;
Riordan, Oliver .
RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (01) :3-122
[6]   FUNCTIONAL POISSON APPROXIMATION IN KANTOROVICH-RUBINSTEIN DISTANCE WITH APPLICATIONS TO U-STATISTICS AND STOCHASTIC GEOMETRY [J].
Decreusefond, Laurent ;
Schulte, Matthias ;
Thaele, Christoph .
ANNALS OF PROBABILITY, 2016, 44 (03) :2147-2197
[7]   Connectivity of Inhomogeneous Random Graphs [J].
Devroye, Luc ;
Fraiman, Nicolas .
RANDOM STRUCTURES & ALGORITHMS, 2014, 45 (03) :408-420
[8]  
Diaz J., 2000, Parallel Processing Letters, V10, P343, DOI 10.1142/S0129626400000329
[9]  
Fraiiceschetti M., 2007, RANDOM NETWORKS COMM
[10]  
Gupta B, 2010, ADV APPL PROBAB, V42, P631