Comparative transcriptome profiling reveals cold stress responsiveness in two contrasting Chinese jujube cultivars

被引:28
|
作者
Zhou, Heying [1 ]
He, Ying [1 ]
Zhu, Yongsheng [2 ]
Li, Meiyu [1 ]
Song, Shuang [1 ]
Bo, Wenhao [1 ]
Li, Yingyue [1 ]
Pang, Xiaoming [1 ]
机构
[1] Beijing Forestry Univ, Coll Biol Sci & Biotechnol, Minist Educ,Natl Engn Lab Tree Breeding,Beijing A, Key Lab Genet & Breeding Forest Trees & Ornamenta, Beijing 100083, Peoples R China
[2] Wuhan Acad Agr Sci, Inst Crop, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Ziziphus jujuba; 'Dongzao'; 'Jinsixiaozao'; Freezing stress; RNA-seq; DEGs; FREEZING TOLERANCE; NEGATIVE REGULATOR; GENE-EXPRESSION; REACTIVE OXYGEN; ARABIDOPSIS; ACCLIMATION; RESPONSES; RICE; PATHWAYS; DROUGHT;
D O I
10.1186/s12870-020-02450-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
BackgroundLow temperature is a major factor influencing the growth and development of Chinese jujube (Ziziphus jujuba Mill.) in cold winter and spring. Little is known about the molecular mechanisms enabling jujube to cope with different freezing stress conditions. To elucidate the freezing-related molecular mechanism, we conducted comparative transcriptome analysis between 'Dongzao' (low freezing tolerance cultivar) and 'Jinsixiaozao' (high freezing tolerance cultivar) using RNA-Seq.ResultsMore than 20,000 genes were detected at chilling (4 degrees C) and freezing (-10 degrees C, -20 degrees C, -30 degrees C and-40 degrees C) stress between the two cultivars. The numbers of differentially expressed genes (DEGs) between the two cultivars were 1831, 2030, 1993, 1845 and 2137 under the five treatments. Functional enrichment analysis suggested that the metabolic pathway, response to stimulus and catalytic activity were significantly enriched under stronger freezing stress. Among the DEGs, nine participated in the Ca2+ signal pathway, thirty-two were identified to participate in sucrose metabolism, and others were identified to participate in the regulation of ROS, plant hormones and antifreeze proteins. In addition, important transcription factors (WRKY, AP2/ERF, NAC and bZIP) participating in freezing stress were activated under different degrees of freezing stress.ConclusionsOur research first provides a more comprehensive understanding of DEGs involved in freezing stress at the transcriptome level in two Z. jujuba cultivars with different freezing tolerances. These results may help to elucidate the molecular mechanism of freezing tolerance in jujube and also provides new insights and candidate genes for genetically enhancing freezing stress tolerance.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Comparative transcriptome analysis reveals gene expression differences between two peach cultivars under saline-alkaline stress
    Shuxia Sun
    Haiyan Song
    Jing Li
    Dong Chen
    Meiyan Tu
    Guoliang Jiang
    Guoqing Yu
    Zhiqin Zhou
    Hereditas, 157
  • [42] Comparative transcriptome analysis reveals molecular regulation of salt tolerance in two contrasting chickpea genotypes
    Khan, Hammad Aziz
    Sharma, Niharika
    Siddique, Kadambot H. M.
    Colmer, Timothy David
    Sutton, Tim
    Baumann, Ute
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [43] Comparative proteomic analysis reveals differential protein and energy metabolisms from two tobacco cultivars in response to cold stress
    Hu, Risheng
    Zhu, Xianxin
    Xiang, Shipeng
    Zhang, Xianwen
    Liu, Zhi
    Zhu, Lieshu
    Cao, Yu
    Yang, Chengwei
    Lai, Jianbin
    ACTA PHYSIOLOGIAE PLANTARUM, 2018, 40 (01)
  • [44] Comparative proteomic analysis reveals differential protein and energy metabolisms from two tobacco cultivars in response to cold stress
    Risheng Hu
    Xianxin Zhu
    Shipeng Xiang
    Xianwen Zhang
    Zhi Liu
    Lieshu Zhu
    Yu Cao
    Chengwei Yang
    Jianbin Lai
    Acta Physiologiae Plantarum, 2018, 40
  • [45] Comparative transcriptome analysis reveals gene expression differences between two peach cultivars under saline-alkaline stress
    Sun, Shuxia
    Song, Haiyan
    Li, Jing
    Chen, Dong
    Tu, Meiyan
    Jiang, Guoliang
    Yu, Guoqing
    Zhou, Zhiqin
    HEREDITAS, 2020, 157 (01)
  • [46] Transcriptome profiling of two contrasting pigeon pea (Cajanus cajan) genotypes in response to waterlogging stress
    Tyagi, Anshika
    Sharma, Sandhya
    Srivastava, Harsha
    Singh, Anuradha
    Kaila, Tanvi
    Ali, Sajad
    Gaikwad, Ambika B.
    Singh, N. K.
    Gaikwad, Kishor
    FRONTIERS IN GENETICS, 2023, 13
  • [47] Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress
    Xu, Weirong
    Li, Ruimin
    Zhang, Ningbo
    Ma, Fuli
    Jiao, Yuntong
    Wang, Zhenping
    PLANT MOLECULAR BIOLOGY, 2014, 86 (4-5) : 527 - 541
  • [48] Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress
    Weirong Xu
    Ruimin Li
    Ningbo Zhang
    Fuli Ma
    Yuntong Jiao
    Zhenping Wang
    Plant Molecular Biology, 2014, 86 : 527 - 541
  • [49] Integrating Physiology, Transcriptome, and Metabolome Analyses Reveals the Drought Response in Two Quinoa Cultivars with Contrasting Drought Tolerance
    Wang, Yang
    Wu, Yang
    Bao, Qinghan
    Shi, Huimin
    Zhang, Yongping
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (22)
  • [50] Comparative transcriptome and proteome profiling of two Citrus sinensis cultivars during fruit development and ripening
    Wang, Jian-hui
    Liu, Jian-jun
    Chen, Ke-ling
    Li, Hong-wen
    He, Jian
    Guan, Bin
    He, Li
    BMC GENOMICS, 2017, 18