New characterizations of Sobolev metric spaces

被引:21
作者
Di Marino, Simone [1 ]
Squassina, Marco [2 ]
机构
[1] Scuola Normale Super Pisa, Indam, Piazza Cavalieri 7, I-56126 Pisa, Italy
[2] Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis, Via Musei 41, I-25121 Brescia, Italy
关键词
Bourgain-Brezis-Mironescu; Nguyen type limits; Hajlasz-Sobolev spaces; LIPSCHITZ FUNCTIONS; APPROXIMATIONS; CONNECTIONS;
D O I
10.1016/j.jfa.2018.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide new characterizations of Sobolev ad BV spaces in doubling and Poincare metric spaces in the spirit of the Bourgain-Brezis-Mironescu and Nguyen limit formulas holding in domains of R-N. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1853 / 1874
页数:22
相关论文
共 33 条
[1]  
Ambrosio L, 2015, ADV STU P M, V67, P1
[2]   Equivalent definitions of BV space and of total variation on metric measure spaces [J].
Ambrosio, Luigi ;
Di Marino, Simone .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (07) :4150-4188
[3]   Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (03) :969-996
[4]  
Björn A, 2011, EMS TRACTS MATH, V17, P1
[5]   Limiting embedding theorems for Ws,p,p when s ↑ 1 and applications [J].
Bourgain, J ;
Brezis, H ;
Mironescu, P .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1) :77-101
[6]  
Bourgain J, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P439
[7]   A new characterization of Sobolev spaces [J].
Bourgain, Jean ;
Nguyen, Hoai-Minh .
COMPTES RENDUS MATHEMATIQUE, 2006, 343 (02) :75-80
[8]   How to recognize constant functions.: Connections with Sobolev spaces [J].
Brézis, H .
RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (04) :693-708
[9]  
Brezis H., 2018, Ann. PDE, V4
[10]   Non-convex, non-local functionals converging to the total variation [J].
Brezis, Haim ;
Hoai-Minh Nguyen .
COMPTES RENDUS MATHEMATIQUE, 2017, 355 (01) :24-27