Hydrodynamics of electrons in graphene

被引:317
作者
Lucas, Andrew [1 ]
Fong, Kin Chung [2 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Quantum Informat Proc Grp, Raytheon BBN Technol, Cambridge, MA 02138 USA
关键词
Dirac fluid; graphene; hydrodynamics; plasma; Fermi liquid; FERMI-LIQUID BEHAVIOR; RENORMALIZATION-GROUP; TRANSPORT; GENERATION; RESISTANCE; SPECTROSCOPY; CONDUCTION; SCATTERING; VISCOSITY; PLASMONS;
D O I
10.1088/1361-648X/aaa274
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Generic interacting many-body quantum systems are believed to behave as classical fluids on long time and length scales. Due to rapid progress in growing exceptionally pure crystals, we are now able to experimentally observe this collective motion of electrons in solid-state systems, including graphene. We present a review of recent progress in understanding the hydrodynamic limit of electronic motion in graphene, written for physicists from diverse communities. We begin by discussing the 'phase diagram' of graphene, and the inevitable presence of impurities and phonons in experimental systems. We derive hydrodynamics, both from a phenomenological perspective and using kinetic theory. We then describe how hydrodynamic electron flow is visible in electronic transport measurements. Although we focus on graphene in this review, the broader framework naturally generalizes to other materials. We assume only basic knowledge of condensed matter physics, and no prior knowledge of hydrodynamics.
引用
收藏
页数:44
相关论文
共 233 条
[31]   Turbulent flows for relativistic conformal fluids in 2+1 dimensions [J].
Carrasco, Federico ;
Lehner, Luis ;
Myers, Robert C. ;
Reula, Oscar ;
Singh, Ajay .
PHYSICAL REVIEW D, 2012, 86 (12)
[32]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[33]   Thermopower and Nernst effect in graphene in a magnetic field [J].
Checkelsky, Joseph G. ;
Ong, N. P. .
PHYSICAL REVIEW B, 2009, 80 (08)
[34]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[35]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[36]   Optical nano-imaging of gate-tunable graphene plasmons [J].
Chen, Jianing ;
Badioli, Michela ;
Alonso-Gonzalez, Pablo ;
Thongrattanasiri, Sukosin ;
Huth, Florian ;
Osmond, Johann ;
Spasenovic, Marko ;
Centeno, Alba ;
Pesquera, Amaia ;
Godignon, Philippe ;
Zurutuza Elorza, Amaia ;
Camara, Nicolas ;
Javier Garcia de Abajo, F. ;
Hillenbrand, Rainer ;
Koppens, Frank H. L. .
NATURE, 2012, 487 (7405) :77-81
[37]   Electron-phonon mediated heat flow in disordered graphene [J].
Chen, Wei ;
Clerk, Aashish A. .
PHYSICAL REVIEW B, 2012, 86 (12)
[38]   EFFECT OF ZN IMPURITIES ON THE NORMAL-STATE HALL ANGLE IN SINGLE-CRYSTAL YBA2CU3-XZNXO7-DELTA [J].
CHIEN, TR ;
WANG, ZZ ;
ONG, NP .
PHYSICAL REVIEW LETTERS, 1991, 67 (15) :2088-2091
[39]  
Crossley M., 2015, ARXIV151103646
[40]   Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene [J].
Crossno, Jesse ;
Shi, Jing K. ;
Wang, Ke ;
Liu, Xiaomeng ;
Harzheim, Achim ;
Lucas, Andrew ;
Sachdev, Subir ;
Kim, Philip ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Ohki, Thomas A. ;
Fong, Kin Chung .
SCIENCE, 2016, 351 (6277) :1058-1061