Using 3D-printed tungsten to optimize liquid metal divertor targets for flow and thermal stresses

被引:33
作者
Rindt, P. [1 ]
Mata Gonzalez, J. [2 ]
Hoogerhuis, P. [3 ]
van den Bosch, P. [3 ]
van Maris, M. [4 ]
Terentyev, D. [5 ]
Yin, C. [5 ]
Wirtz, M. [6 ]
Cardozo, N. J. Lopes [1 ]
van Dommelen, J. A. W. [4 ]
Morgan, T. W. [7 ]
机构
[1] Eindhoven Univ Technol, Sci & Technol Nucl Fus Grp, Eindhoven, Netherlands
[2] Univ Politech Catalunya, Carrer Jordi Girona 1, Barcelona 08034, Spain
[3] Philips Med Syst, Veenpluis 4-6, NL-5684 PC Best, Netherlands
[4] Eindhoven Univ Technol, Sect Mech Mat, Eindhoven, Netherlands
[5] SCK CEN, Nucl Mat Sci Inst, Boeretang 200, B-2400 Mol, Belgium
[6] Forschungszentrum Julich, Inst Energie & Klimaforsch, D-52425 Julich, Germany
[7] DIFFER Dutch Inst Fundamental Energy Res, De Zaale 20, NL-5612 AJ Eindhoven, Netherlands
关键词
fusion; divertor; 3D-printing; tungsten; lithium; liquid metal; Magnum-PSI; DESIGN; LITHIUM; DEMO; ITER;
D O I
10.1088/1741-4326/ab0a76
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Liquid metal divertors aim to provide a more robust alternative to conventional tungsten divertors. However, they still require a solid substrate to confine the liquid metal. This work proposes a novel design philosophy for liquid metal divertor targets, which allows for a two orders of magnitude reduction of thermal stresses compared to the state-of-the-art monoblock designs. The main principle is based on a 3D-printed tungsten structure, which has low connectedness in the direction perpendicular to the thermal gradient, and as a result also short length scales. This allows for thermal expansion. Voids in the structure are filled with liquid lithium which can conduct heat and reduce the surface temperature via vapor shielding, further suppressing thermal stresses. To demonstrate the effectiveness of this design strategy, an existing liquid metal concept is re-designed, fabricated, and tested on the linear plasma device Magnum-PSI. The thermo-mechanical finite element method analysis of the improved design matches the temperature response during the experiments, and indicates that thermal stresses are two orders of magnitude lower than in the conventional monoblock designs. The relaxation of the strength requirement allows for much larger failure margins and consequently for many new design possibilities.
引用
收藏
页数:6
相关论文
共 26 条
[1]  
ABRAMS T.W, 2015, THESIS
[2]  
[Anonymous], 2016, Nucl. Mater. Energy., DOI [DOI 10.1016/J.NME, 10.1016/J.NME.2016.07.003, DOI 10.1016/J.NME.2016.07.003]
[3]   Liquid metals as alternative solution for the power exhaust of future fusion devices: status and perspective [J].
Coenen, J. W. ;
De Temmerman, G. ;
Federici, G. ;
Philipps, V. ;
Sergienko, G. ;
Strohmayer, G. ;
Terra, A. ;
Unterberg, B. ;
Wegener, T. ;
Van den Bekerom, D. C. M. .
PHYSICA SCRIPTA, 2014, T159
[4]   ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade [J].
Eich, T. ;
Sieglin, B. ;
Thornton, A. J. ;
Faitsch, M. ;
Kirk, A. ;
Herrmann, A. ;
Suttrop, W. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. ;
Asunta, O. ;
Atanasiu, C. V. ;
Austin, Y. ;
Avotina, L. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :84-90
[5]   Selective Laser Melting Additive Manufacturing of Hard-to-Process Tungsten-Based Alloy Parts With Novel Crystalline Growth Morphology and Enhanced Performance [J].
Gu, Dongdong ;
Dai, Donghua ;
Chen, Wenhua ;
Chen, Hongyu .
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2016, 138 (08)
[6]   Neutron irradiation effects on tungsten materials [J].
Hasegawa, Akira ;
Fukuda, Makoto ;
Nogami, Shuhei ;
Yabuuchi, Kiyohiro .
FUSION ENGINEERING AND DESIGN, 2014, 89 (7-8) :1568-1572
[7]   Selective laser melting of tungsten and tungsten alloys [J].
Ivekovic, Aljaz ;
Omidvari, Neda ;
Vrancken, Bey ;
Lietaert, Karel ;
Thijs, Lore ;
Vanmeensel, Kim ;
Vleugels, Jef ;
Kruth, Jean-Pierre .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2018, 72 :27-32
[8]   Liquid lithium divertor characteristics and plasma-material interactions in NSTX high-performance plasmas [J].
Jaworski, M. A. ;
Abrams, T. ;
Allain, J. P. ;
Bell, M. G. ;
Bell, R. E. ;
Diallo, A. ;
Gray, T. K. ;
Gerhardt, S. P. ;
Kaita, R. ;
Kugel, H. W. ;
LeBlanc, B. P. ;
Maingi, R. ;
McLean, A. G. ;
Menard, J. ;
Nygren, R. ;
Ono, M. ;
Podesta, M. ;
Roquemore, A. L. ;
Sabbagh, S. A. ;
Scotti, F. ;
Skinner, C. H. ;
Soukhanovskii, V. A. ;
Stotler, D. P. .
NUCLEAR FUSION, 2013, 53 (08)
[9]   Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO [J].
Kallenbach, A. ;
Bernert, M. ;
Dux, R. ;
Casali, L. ;
Eich, T. ;
Giannone, L. ;
Herrmann, A. ;
McDermott, R. ;
Mlynek, A. ;
Mueller, H. W. ;
Reimold, F. ;
Schweinzer, J. ;
Sertoli, M. ;
Tardini, G. ;
Treutterer, W. ;
Viezzer, E. ;
Wenninger, R. ;
Wischmeier, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (12)
[10]   Design options to mitigate deep cracking of tungsten armor [J].
Li, Muyuan ;
You, Jeong-Ha .
FUSION ENGINEERING AND DESIGN, 2017, 124 :468-472