Singularity formation in a cylindrical and a spherical vortex sheet

被引:15
作者
Nitsche, M [1 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
基金
美国国家科学基金会;
关键词
vortex sheet; singularity formation; axisymmetric vortex sheets;
D O I
10.1006/jcph.2001.6872
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The evolutions of the planar and axisymmetric vortex sheets generated by the impulsive motion of a cylinder and a sphere, respectively, are compared numerically. The numerical method addresses difficulties that occur in the axisymmetric case near the axis of symmetry. The planar vortex sheet is known to develop a branch point singularity in finite time. Comparison of the planar and axisymmetric solutions indicates that the axisymmetric sheet develops a branch point singularity as well. and that it is of the same order p as the planar singularity. The value of p is consistent with 3/2. (C) 2001 Academic Press.
引用
收藏
页码:208 / 230
页数:23
相关论文
共 31 条
[1]   SINGULARITY FORMATION DURING RAYLEIGH-TAYLOR INSTABILITY [J].
BAKER, G ;
CAFLISCH, RE ;
SIEGEL, M .
JOURNAL OF FLUID MECHANICS, 1993, 252 :51-78
[2]  
Baker G. R., 1983, Waves on Fluid Interfaces. Proceedings of a Symposium, P53
[3]   BOUNDARY INTEGRAL METHODS FOR AXISYMMETRIC AND 3-DIMENSIONAL RAYLEIGH-TAYLOR INSTABILITY PROBLEMS [J].
BAKER, GR ;
MEIRON, DI ;
ORSZAG, SA .
PHYSICA D, 1984, 12 (1-3) :19-31
[4]  
Batchelor G. K., 1967, INTRO FLUID MECH
[5]   On singularity formation in three-dimensional vortex sheet evolution [J].
Brady, M ;
Pullin, DI .
PHYSICS OF FLUIDS, 1999, 11 (11) :3198-3200
[6]   Almost optimal convergence of the point vortex method for vortex sheets using numerical filtering [J].
Caflisch, RE ;
Hou, TY ;
Lowengrub, J .
MATHEMATICS OF COMPUTATION, 1999, 68 (228) :1465-1496
[7]   MULTIVALUED SOLUTIONS AND BRANCH POINT SINGULARITIES FOR NONLINEAR HYPERBOLIC OR ELLIPTIC-SYSTEMS [J].
CAFLISCH, RE ;
ERCOLANI, N ;
HOU, TY ;
LANDIS, Y .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (04) :453-499
[8]  
CAFLISCH RE, 1996, SELECTA MATH, V2, P369
[9]  
CARRIER GF, 1966, FUNCTIONS COMPLEX VA
[10]   Computation of axisymmetric suction flow through porous media in the presence of surface tension [J].
Ceniceros, HD ;
Si, H .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 165 (01) :237-260