Adding features from the mathematical model of breast cancer to predict the tumour size

被引:6
|
作者
Nave, OPhir [1 ]
机构
[1] Jerusalem Coll Technol, Dept Math, Jerusalem, Israel
关键词
Mathematical model; Breast cancer; Machine learning; Theoretical biology; VALIDATION;
D O I
10.1080/23799927.2020.1792552
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this study, we combine a theoretical mathematical model with machine learning (ML) to predict tumour sizes in breast cancer. Our study is based on clinical data from 1869 women of various ages with breast cancer. To accurately predict tumour size for each woman individually, we solved our customized mathematical model for each woman, then added the solution vector of the dynamic variables in the model (in machine learning language, these are called features) to the clinical data and used a variety of machine learning algorithms. We compared the results obtained with and without the mathematical model and showed that by adding specific features from the mathematical model we were able to better predict tumour size for each woman.
引用
收藏
页码:159 / 174
页数:16
相关论文
共 50 条
  • [21] Measurement of tumour size with mammography, sonography and magnetic resonance imaging as compared to histological tumour size in primary breast cancer
    Ines V Gruber
    Miriam Rueckert
    Karl O Kagan
    Annette Staebler
    Katja C Siegmann
    Andreas Hartkopf
    Diethelm Wallwiener
    Markus Hahn
    BMC Cancer, 13
  • [22] Assessment of breast cancer tumour size using six different methods
    Martina Meier-Meitinger
    Lothar Häberle
    Peter A. Fasching
    Mayada R. Bani
    Katharina Heusinger
    David Wachter
    Matthias W. Beckmann
    Michael Uder
    Rüdiger Schulz-Wendtland
    Boris Adamietz
    European Radiology, 2011, 21 : 1180 - 1187
  • [23] Socioeconomic differences in breast cancer tumour size and relative survival in the Netherlands
    Bastiaannet, E.
    De Craen, A. J. M.
    Van der Geest, L. G. M.
    Westendorp, R. G. J.
    Van de Velde, C. J. H.
    Liefers, G. J.
    EJC SUPPLEMENTS, 2010, 8 (03): : 88 - 88
  • [24] Tumour size as a predictor of axillary node metastases in patients with breast cancer
    Laura, Sharon
    Coombs, Nathan J.
    Ung, Owen
    Boyages, John
    ANZ JOURNAL OF SURGERY, 2006, 76 (11) : 1002 - 1006
  • [25] Assessment of breast cancer tumour size using six different methods
    Meier-Meitinger, Martina
    Haeberle, Lothar
    Fasching, Peter A.
    Bani, Mayada R.
    Heusinger, Katharina
    Wachter, David
    Beckmann, Matthias W.
    Uder, Michael
    Schulz-Wendtland, Ruediger
    Adamietz, Boris
    EUROPEAN RADIOLOGY, 2011, 21 (06) : 1180 - 1187
  • [26] Impact of tumour size on axillary involvement and distant dissemination in breast cancer
    Koscielny, S.
    Arriagada, R.
    Adolfsson, J.
    Fornander, T.
    Bergh, J.
    BRITISH JOURNAL OF CANCER, 2009, 101 (06) : 902 - 907
  • [27] Impact of tumour size on axillary involvement and distant dissemination in breast cancer
    S Koscielny
    R Arriagada
    J Adolfsson
    T Fornander
    J Bergh
    British Journal of Cancer, 2009, 101 : 902 - 907
  • [28] A mathematical model of axillary lymph node involvement considering lymph node size in patients with breast cancer
    Suzuma T.
    Sakurai T.
    Yoshimura G.
    Umemura T.
    Tamaki T.
    Naito Y.
    Breast Cancer, 2001, 8 (3) : 206 - 212
  • [29] Do primary tumour characteristics predict axillary nodal status in breast cancer?
    Thakur, K
    Faiz, O
    Tekkis, P
    Chianakwalam, C
    Bates, T
    BRITISH JOURNAL OF SURGERY, 2002, 89 : 75 - 75
  • [30] MATHEMATICAL MODEL TO PREDICT PESTICIDE RUNOFF FROM SOIL
    BAILEY, GW
    NICHOLSO.HP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1971, (NSEP): : 15 - &