General Cortical and Special Prefrontal Connections: Principles from Structure to Function

被引:270
作者
Barbas, Helen [1 ]
机构
[1] Boston Univ, Sch Med, Grad Program Neurosci, Neural Syst Lab,Dept Hlth Sci, Boston, MA 02215 USA
来源
ANNUAL REVIEW OF NEUROSCIENCE, VOL 38 | 2015年 / 38卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
structural model; systematic cortical variation; cortical development; emotions; schizophrenia; autism; THALAMIC RETICULAR NUCLEUS; ANTERIOR CINGULATE CORTEX; LOCAL CIRCUIT NEURONS; RHESUS-MONKEY; FRONTAL-LOBE; SYNAPTIC CONNECTIONS; GABAERGIC PROJECTION; INHIBITORY SYSTEMS; TEMPORAL CORTICES; CYNOMOLGUS MONKEY;
D O I
10.1146/annurev-neuro-071714-033936
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
How is the vast brain communication system organized? A structural model relates connections to laminar differences between linked areas. The model is based on the principle of systematic structural variation in the cortex, extending from the simplest limbic cortices to eulaminate areas with elaborate lamination. The model accounts for laminar patterns and for the strength and topography of connections between nearby or distant cortices and subcortical structures, exemplified quantitatively for the principal and special prefrontal connections. Widespread connections of limbic areas and focal connections of eulaminate areas yield a broad range of circuit patterns for diverse functions. These diverse pathways innervate excitatory and functionally distinct inhibitory neurons, providing the basis for differential recruitment of areas for flexible behavior. Systematic structural variation likely emerges by timing differences in the development of distinct areas and has important implications for altered connections in diseases of developmental origin.
引用
收藏
页码:269 / 289
页数:21
相关论文
共 146 条
[1]   Cortical lamination in the Monotremata [J].
Abbie, AA .
JOURNAL OF COMPARATIVE NEUROLOGY, 1940, 72 (03) :429-467
[2]  
Allman J, 1988, VISUAL CORTEX PRIMAT, P279
[3]  
[Anonymous], 2005, DESCARTES ERROR EMOT
[4]   Petilla terminology:: nomenclature of features of GABAergic interneurons of the cerebral cortex [J].
Ascoli, Giorgio A. ;
Alonso-Nanclares, Lidia ;
Anderson, Stewart A. ;
Barrionuevo, German ;
Benavides-Piccione, Ruth ;
Burkhalter, Andreas ;
Buzsaki, Gyoergy ;
Cauli, Bruno ;
DeFelipe, Javier ;
Fairen, Alfonso ;
Feldmeyer, Dirk ;
Fishell, Gord ;
Fregnac, Yves ;
Freund, Tamas F. ;
Gardner, Daniel ;
Gardner, Esther P. ;
Goldberg, Jesse H. ;
Helmstaedter, Moritz ;
Hestrin, Shaul ;
Karube, Fuyuki ;
Kisvarday, Zoltan F. ;
Lambolez, Bertrand ;
Lewis, David A. ;
Marin, Oscar ;
Markram, Henry ;
Munoz, Alberto ;
Packer, Adam ;
Petersen, Carl C. H. ;
Rockland, Kathleen S. ;
Rossier, Jean ;
Rudy, Bernardo ;
Somogyi, Peter ;
Staiger, Jochen F. ;
Tamas, Gabor ;
Thomson, Alex M. ;
Toledo-Rodriguez, Maria ;
Wang, Yun ;
West, David C. ;
Yuste, Rafael .
NATURE REVIEWS NEUROSCIENCE, 2008, 9 (07) :557-568
[5]  
Barbas H, 1999, J COMP NEUROL, V410, P343, DOI 10.1002/(SICI)1096-9861(19990802)410:3<343::AID-CNE1>3.0.CO
[6]  
2-1
[7]   ARCHITECTURE AND INTRINSIC CONNECTIONS OF THE PREFRONTAL CORTEX IN THE RHESUS-MONKEY [J].
BARBAS, H ;
PANDYA, DN .
JOURNAL OF COMPARATIVE NEUROLOGY, 1989, 286 (03) :353-375
[8]   Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey [J].
Barbas, H ;
Blatt, GJ .
HIPPOCAMPUS, 1995, 5 (06) :511-533
[9]   Parallel organization of contralateral and ipsilateral prefrontal cortical projections in the rhesus monkey [J].
Barbas, H ;
Hilgetag, CC ;
Saha, S ;
Dermon, CR ;
Suski, JL .
BMC NEUROSCIENCE, 2005, 6 (1)
[10]   ORGANIZATION OF CORTICAL AFFERENT INPUT TO ORBITOFRONTAL AREAS IN THE RHESUS-MONKEY [J].
BARBAS, H .
NEUROSCIENCE, 1993, 56 (04) :841-864