Domestic heat demand prediction using neural networks

被引:24
作者
Bakker, Vincent [1 ]
Molderink, Albert [1 ]
Hurink, Johann L. [1 ]
Smit, Gerard J. M. [1 ]
机构
[1] Univ Twente, Dept EEMCS, NL-7500 AE Enschede, Netherlands
来源
ICSENG 2008: INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING | 2008年
关键词
D O I
10.1109/ICSEng.2008.51
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
By combining a cluster of microCHP appliances, a virtual power plant can be formed. To use such a virtual power plant, a good heat demand prediction of individual households is needed since the heat demand determines the production capacity. In this paper we present the results of using neural networks techniques to predict the heat demand of individual households. This prediction is required to determine the electricity production capacity of the large fleet of microCHP appliances. All predictions are short-term (for one day) and use historical heat demand and weather influences as input.
引用
收藏
页码:189 / 194
页数:6
相关论文
共 6 条
[1]   Specification of neural network applications in the load forecasting problems [J].
Azzam-ul-Asar ;
McDonald, James R. .
IEEE Transactions on Control Systems Technology, 1994, 2 (02) :135-141
[2]   WEATHER SENSITIVE SHORT-TERM LOAD FORECASTING USING NONFULLY CONNECTED ARTIFICIAL NEURAL NETWORK [J].
CHEN, ST ;
YU, DC ;
MOGHADDAMJO, AR ;
LU, CN ;
VEMURI, S .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1992, 7 (03) :1098-1105
[3]  
DEJONG A, 2006, TECHNISCH ENERGIE CO
[4]  
Krose B., 1993, An Introduction to Neural Networks
[5]   AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF NONLINEAR PARAMETERS [J].
MARQUARDT, DW .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1963, 11 (02) :431-441
[6]  
*US DOE, 2003, MICR TECHN ROADM WOR