FPGA-Based High-Performance Data Compression Deep Neural Network Accelerator

被引:3
|
作者
Wang, Hanze [1 ]
Fu, Yingxun [1 ]
Ma, Li [1 ]
机构
[1] North China Univ Technol, Coll Informat Sci, Beijing, Peoples R China
来源
2022 INTERNATIONAL CONFERENCE ON BIG DATA, INFORMATION AND COMPUTER NETWORK (BDICN 2022) | 2022年
关键词
deep neural networks; compression; transmission; fpga;
D O I
10.1109/BDICN55575.2022.00109
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep neural networks play an important role in extracting valuable information from massive amounts of data. But these networks require huge computational and memory overhead, which hinders their use in resource-limited environments, such as mobile or embedded devices. In order to solve this problem, researchers usually reduce the amount of data and the number of memory accesses to reduce the overhead caused by data transmission. In this paper, we design a compressed storage and calculation fusion (CSCF) algorithm for massive input data to compress the input data volume and improve the processing efficiency of terminal equipment. Firstly, we scan and compress the collected data, then classify and store the compressed data according to the location of consecutive zero-valued pixel blocks. In order to adapt to actual development scenarios, we choose FPGA hardware architecture with high flexibility, low energy consumption, and short development cycle as the terminal processor. Therefore, we design a classification calculation unit corresponding to classification compression and storage on the FPGA architecture, and improve the performance of the model by fusing the first-layer convolution calculation of the convolution neural network and the compression storage of the input data. The evaluation results show that, compared with the traditional neural network accelerator for uncompressed transmission, our CSCF-FPGA accelerator achieves a speedup of 3.8-4.8 times on the MNIST data set and 1.8-2.1 times on the CIFAR series data set. Small fluctuations in speedup ratio and hardware resource utilization show that CSCF-FPGA not only achieves good performance, but also brings no additional hardware loss.
引用
收藏
页码:563 / 569
页数:7
相关论文
共 50 条
  • [41] FPGA-based Acceleration of Neural Network Training
    Sang, Ruoyu
    Liu, Qiang
    Zhang, Qijun
    2016 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO), 2016,
  • [42] An FPGA-Based Reconfigurable Convolutional Neural Network Accelerator for Tiny YOLO-V3
    Tsai, Tsung-Han
    Tung, Nai-Chieh
    Chen, Chun-Yu
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2025, : 3388 - 3409
  • [43] An FPGA-Based High-Throughput Keypoint Detection Accelerator Using Convolutional Neural Network for Mobile Robot Applications
    Li, Jingyuan
    Liu, Ye
    Huang, Kun
    Zhou, Liang
    Chang, Liang
    Zhou, Jun
    2022 IEEE ASIA PACIFIC CONFERENCE ON POSTGRADUATE RESEARCH IN MICROELECTRONICS AND ELECTRONICS, PRIMEASIA, 2022, : 81 - 84
  • [44] FACL: A Flexible and High-Performance ACL engine on FPGA-based SmartNIC
    Jia, Chengjun
    Li, Chenglong
    Li, Yifan
    Hu, Xiaohe
    Li, Jun
    2022 IFIP NETWORKING CONFERENCE (IFIP NETWORKING), 2022,
  • [45] An FPGA-Based Performance Evaluation of Artificial Neural Network Architecture Algorithm for IoT
    Teodoro, Arthur A. M.
    Gomes, Otavio S. M.
    Saadi, Muhammad
    Silva, Bruno A.
    Rosa, Renata L.
    Rodriguez, Demostenes Z.
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 127 (02) : 1085 - 1116
  • [46] Optimized FPGA-based Deep Learning Accelerator for Sparse CNN using High Bandwidth Memory
    Jiang, Chao
    Ojika, David
    Patel, Bhavesh
    Lam, Herman
    2021 IEEE 29TH ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM 2021), 2021, : 157 - 164
  • [47] High-Performance Computation of LGCA Fluid Dynamics on an FPGA-Based Platform
    Du, Changdao
    Firmansyah, Iman
    Yamaguchi, Yoshiki
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS (ICCCS 2020), 2020, : 520 - 525
  • [48] FPGA-Based High-Performance and Scalable Block LU Decomposition Architecture
    Jaiswal, Manish Kumar
    Chandrachoodan, Nitin
    IEEE TRANSACTIONS ON COMPUTERS, 2012, 61 (01) : 60 - 72
  • [49] Energy-Efficient and High-Throughput FPGA-based Accelerator for Convolutional Neural Networks
    Feng, Gan
    Hu, Zuyi
    Chen, Song
    Wu, Feng
    2016 13TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), 2016, : 624 - 626
  • [50] An FPGA-Based accelerator for multiphysics modeling
    Huang, XM
    Ma, J
    ERSA '04: THE 2004 INTERNATIONAL CONFERENCE ON ENGINEERING OF RECONFIGURABLE SYSTEMS AND ALGORITHMS, 2004, : 209 - 212