Modeling binding and cross-modal learning in Markov logic networks

被引:1
|
作者
Vrecko, Alen [1 ]
Leonardis, Ales [1 ]
Skocaj, Danijel [1 ]
机构
[1] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana 1000, Slovenia
关键词
Binding; Cross-modal learning; Graphical models; Markov logic networks; Cognitive systems; SYSTEMS; WORDS;
D O I
10.1016/j.neucom.2012.01.037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Binding - the ability to combine two or more modal representations of the same entity into a single shared representation - is vital for every cognitive system operating in a complex environment. In order to successfully adapt to changes in a dynamic environment the binding mechanism has to be supplemented with cross-modal learning. In this paper we define the problems of high-level binding and cross-modal learning. By these definitions we model a binding mechanism in a Markov logic network and define its role in a cognitive architecture. We evaluate a prototype binding system off-line, using three different inference methods. (C) 2012 Elsevier ay. All rights reserved.
引用
收藏
页码:29 / 36
页数:8
相关论文
共 50 条
  • [31] Oracle Character Recognition Based on Cross-Modal Deep Metric Learning
    Zhang Y.-K.
    Zhang H.
    Liu Y.-G.
    Liu C.-L.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (04): : 791 - 800
  • [32] Markov logic networks
    Richardson, M
    Domingos, P
    MACHINE LEARNING, 2006, 62 (1-2) : 107 - 136
  • [33] Markov logic networks
    Matthew Richardson
    Pedro Domingos
    Machine Learning, 2006, 62 : 107 - 136
  • [34] Probabilistic Modeling of Failure Dependencies Using Markov Logic Networks
    Ghosh, Shalini
    Steiner, Wilfried
    Denker, Grit
    Lincoln, Patrick
    2013 IEEE 19TH PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING (PRDC 2013), 2013, : 162 - 171
  • [35] Cross-modal signaling in giant pandas
    Xu Meng
    Wang ZhiPeng
    Liu DingZhen
    Wei RongPing
    Zhang GuiQuan
    Zhang HeMin
    Zhou XiaoPing
    Li DeSheng
    CHINESE SCIENCE BULLETIN, 2012, 57 (04): : 344 - 348
  • [36] Self-Supervised Intra-Modal and Cross-Modal Contrastive Learning for Point Cloud Understanding
    Wu, Yue
    Liu, Jiaming
    Gong, Maoguo
    Gong, Peiran
    Fan, Xiaolong
    Qin, A. K.
    Miao, Qiguang
    Ma, Wenping
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 1626 - 1638
  • [37] LEARNING COMPLEX EVENT MODELS USING MARKOV LOGIC NETWORKS
    Kardas, Karani
    Ulusoy, Ilkay
    Cicekli, Nihan Kesim
    ELECTRONIC PROCEEDINGS OF THE 2013 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW), 2013,
  • [38] Adversarial-Metric Learning for Audio-Visual Cross-Modal Matching
    Zheng, Aihua
    Hu, Menglan
    Jiang, Bo
    Huang, Yan
    Yan, Yan
    Luo, Bin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 338 - 351
  • [39] Cross-Modal Learning for Anomaly Detection in Complex Industrial Process: Methodology and Benchmark
    Wu, Gaochang
    Zhang, Yapeng
    Deng, Lan
    Zhang, Jingxin
    Chai, Tianyou
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2632 - 2645
  • [40] Lifelong Visual-Tactile Cross-Modal Learning for Robotic Material Perception
    Zheng, Wendong
    Liu, Huaping
    Sun, Fuchun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (03) : 1192 - 1203