Cross talk between Ca2+ and redox signalling cascades in muscle and neurons through the combined activation of ryanodine receptors/Ca2+ release channels

被引:57
作者
Hidalgo, C
机构
[1] Univ Chile, Fac Med, FONDAP Ctr Mol Studies Cell, Santiago 7, Chile
[2] Univ Chile, Fac Med, Inst Ciencias Biomed, Santiago 7, Chile
关键词
hydrogen peroxide; S-nitrosylation; S-glutathionylation; skeletal muscle; neuronal function; redox regulation; LONG-TERM POTENTIATION; SENSITIVE CALCIUM-CHANNELS; RAT SKELETAL-MUSCLE; NITRIC-OXIDE; SARCOPLASMIC-RETICULUM; HYDROGEN-PEROXIDE; ENDOPLASMIC-RETICULUM; SYNAPTIC PLASTICITY; ALZHEIMERS-DISEASE; S-NITROSYLATION;
D O I
10.1098/rstb.2005.1759
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Calcium release mediated by the ryanodine receptors (RyR) Ca2+ release channels is required for muscle contraction and contributes to neuronal plasticity. In particular, Ca2+ activation of RyR-mediated Ca2+ release can amplify and propagate Ca2+ signals initially generated by Ca2+ entry into cells. Redox modulation of RyR function by a variety of non-physiological or endogenous redox molecules has been reported. The effects of RyR redox modification on Ca2+ release in skeletal muscle as well as the activation of signalling cascades and transcription factors in neurons will be reviewed here. Specifically, the different effects of S-nitrosylation or S-glutathionylation of RyR cysteines by endogenous redox-active agents on the properties of skeletal muscle RyRs will be discussed. Results will be presented indicating that these cysteine modifications change the activity of skeletal muscle RyRs, modify their behaviour towards both activators and inhibitors and affect their interactions with FKBP12 and calmodulin. In the hippocampus, sequential activation of ERK1/2 and CREB is a requisite for Ca2+-dependent gene expression associated with long-lasting synaptic plasticity. The effects of reactive oxygen/nitrogen species on RyR channels from neurons and RyR-mediated sequential activation of neuronal ERK1/2 and CREB produced by hydrogen peroxide and other stimuli will be discussed as well.
引用
收藏
页码:2237 / 2246
页数:10
相关论文
共 113 条
[1]   Molecular psychology: Roles for the ERK MAP kinase cascade in memory [J].
Adams, JP ;
Sweatt, JD .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2002, 42 :135-163
[2]   Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse [J].
Andrade, FH ;
Reid, MB ;
Allen, DG ;
Westerblad, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 509 (02) :565-575
[3]  
Andrade FH, 2001, FASEB J, V15, P309
[4]   Effects of S-glutathionylation and S-nitrosylation on calmodulin binding to triads and FKBP12 binding to type 1 calcium release channels [J].
Aracena, P ;
Tang, WT ;
Hamilton, SL ;
Hidalgo, C .
ANTIOXIDANTS & REDOX SIGNALING, 2005, 7 (7-8) :870-881
[5]   S-glutathionylation decreases Mg2+ inhibition and S-nitrosylation enhances Ca2+ activation of RyR1 channels [J].
Aracena, P ;
Sánchez, G ;
Donoso, P ;
Hamilton, SL ;
Hidalgo, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (44) :42927-42935
[6]   A NOVEL CHOLINERGIC INDUCTION OF LONG-TERM POTENTIATION IN RAT HIPPOCAMPUS [J].
AUERBACH, JM ;
SEGAL, M .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 72 (04) :2034-2040
[7]   Annexin VI is attached to transverse-tubule membranes in isolated skeletal muscle triads [J].
Barrientos, G ;
Hidalgo, C .
JOURNAL OF MEMBRANE BIOLOGY, 2002, 188 (02) :163-173
[8]   Aging and acute exercise enhance free radical generation in rat skeletal muscle [J].
Bejma, J ;
Ji, LL .
JOURNAL OF APPLIED PHYSIOLOGY, 1999, 87 (01) :465-470
[9]   Calcium signalling: Dynamics, homeostasis and remodelling [J].
Berridge, MJ ;
Bootman, MD ;
Roderick, HL .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (07) :517-529
[10]   The versatility and universality of calcium signalling [J].
Berridge, MJ ;
Lipp, P ;
Bootman, MD .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2000, 1 (01) :11-21