Clustering sequence data using hidden Markov model representation

被引:10
|
作者
Li, C [1 ]
Biswas, G [1 ]
机构
[1] Vanderbilt Univ, Dept Comp Sci, Nashville, TN 37235 USA
来源
DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS, AND TECHNOLOGY | 1999年 / 3695卷
关键词
clustering; hidden Markov model; model selection; Bayesian Information Criterion(BIC); mutual information;
D O I
10.1117/12.339979
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposed a clustering methodology for sequence data using hidden Markov model(HMM) representation. The proposed methodology improves upon existing HMM based clustering methods in two ways: (i) it enables HMMs to dynamically change its model structure to obtain a better fit model for data during clustering process, and (ii) it provides objective criterion function to select the optimal clustering partition. The algorithm is presented in terms of four nested levels of searches: (i) the search. for the optimal number of clusters in a partition, (ii) the search for the optimal structure for a given partition, (iii) the search for the optimal HMM structure for each cluster, and (iv) the search for the optimal HMM parameters for each HMM. Preliminary results are given to support the proposed methodology.
引用
收藏
页码:14 / 21
页数:4
相关论文
共 50 条
  • [22] A robustified Hidden Markov Model for visual tracking with subspace representation
    Gai, Jiading
    Stevenson, Robert L.
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2007, PTS 1 AND 2, 2007, 6508
  • [23] Clustering Multivariate Time Series Using Hidden Markov Models
    Ghassempour, Shima
    Girosi, Federico
    Maeder, Anthony
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2014, 11 (03) : 2741 - 2763
  • [24] Prediction of schizophrenia from activity data using hidden Markov model parameters
    Matthias Boeker
    Hugo L. Hammer
    Michael A. Riegler
    Pål Halvorsen
    Petter Jakobsen
    Neural Computing and Applications, 2023, 35 : 5619 - 5630
  • [25] Prediction of schizophrenia from activity data using hidden Markov model parameters
    Boeker, Matthias
    Hammer, Hugo L.
    Riegler, Michael A.
    Halvorsen, Pal
    Jakobsen, Petter
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (08) : 5619 - 5630
  • [26] Clustering Multivariate Longitudinal Observations: The Contaminated Gaussian Hidden Markov Model
    Punzo, Antonio
    Maruotti, Antonello
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (04) : 1097 - 1116
  • [27] Weather Forecasting Using Hidden Markov Model
    Khiatani, Diksha
    Ghose, Udayan
    2017 INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES FOR SMART NATION (IC3TSN), 2017, : 220 - 225
  • [28] Attack Prediction using Hidden Markov Model
    Dass, Shuvalaxmi
    Datta, Prerit
    Namin, Akbar Siami
    2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021), 2021, : 1695 - 1702
  • [29] Dictionary learning for sparse representation of signals with hidden Markov model dependency
    Akhavan, S.
    Baghestani, F.
    Kazemi, P.
    Karami, A.
    Soltanian-Zadeh, H.
    DIGITAL SIGNAL PROCESSING, 2022, 123
  • [30] Analysis of Nucleotide Sequence with Normal and Affected Cancer Liver Cells Using Hidden Markov Model
    Mayilvaganan, M.
    Rajamani, R.
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC), 2014, : 292 - 295