Clustering sequence data using hidden Markov model representation

被引:10
|
作者
Li, C [1 ]
Biswas, G [1 ]
机构
[1] Vanderbilt Univ, Dept Comp Sci, Nashville, TN 37235 USA
来源
DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS, AND TECHNOLOGY | 1999年 / 3695卷
关键词
clustering; hidden Markov model; model selection; Bayesian Information Criterion(BIC); mutual information;
D O I
10.1117/12.339979
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposed a clustering methodology for sequence data using hidden Markov model(HMM) representation. The proposed methodology improves upon existing HMM based clustering methods in two ways: (i) it enables HMMs to dynamically change its model structure to obtain a better fit model for data during clustering process, and (ii) it provides objective criterion function to select the optimal clustering partition. The algorithm is presented in terms of four nested levels of searches: (i) the search. for the optimal number of clusters in a partition, (ii) the search for the optimal structure for a given partition, (iii) the search for the optimal HMM structure for each cluster, and (iv) the search for the optimal HMM parameters for each HMM. Preliminary results are given to support the proposed methodology.
引用
收藏
页码:14 / 21
页数:4
相关论文
共 50 条
  • [1] Quantitative logging data clustering with hidden Markov model to assist log unit classification
    Yabe, Suguru
    Hamada, Yohei
    Fukuchi, Rina
    Nomura, Shunichi
    Shigematsu, Norio
    Kiguchi, Tsutomu
    Ueki, Kenta
    EARTH PLANETS AND SPACE, 2022, 74 (01):
  • [2] Quantitative logging data clustering with hidden Markov model to assist log unit classification
    Suguru Yabe
    Yohei Hamada
    Rina Fukuchi
    Shunichi Nomura
    Norio Shigematsu
    Tsutomu Kiguchi
    Kenta Ueki
    Earth, Planets and Space, 74
  • [3] Hidden Markov Model Representation Using Probabilistic Neural Network
    Hewahi, Nabil M.
    BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2018, 9 (03): : 50 - 62
  • [4] Attack Sequence Detection in Cloud Using Hidden Markov Model
    Chen, Chia-Mei
    Guan, D. J.
    Huang, Yu-Zhi
    Ou, Ya-Hui
    PROCEEDINGS OF THE 2012 SEVENTH ASIA JOINT CONFERENCE ON INFORMATION SECURITY (ASIAJCIS 2012), 2012, : 100 - 103
  • [5] Modelling of crude oil price data using hidden Markov model
    Kadhem, Safaa
    Thajel, Haider
    JOURNAL OF RISK FINANCE, 2023, 24 (02) : 269 - 284
  • [6] Clustering with Hidden Markov Model on Variable Blocks
    Lin, Lin
    Li, Jia
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [7] A mutagenetic tree hidden Markov model for longitudinal clonal HIV sequence data
    Beerenwinkel, Niko
    Drton, Mathias
    BIOSTATISTICS, 2007, 8 (01) : 53 - 71
  • [8] Markov Financial Model Using Hidden Markov Model
    Luc Tri Tuyen
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 40 (10): : 72 - 83
  • [9] Spatial Region Estimation for Autonomous CoT Clustering Using Hidden Markov Model
    Jung, Joon-young
    Min, Okgee
    ETRI JOURNAL, 2018, 40 (01) : 122 - 132
  • [10] Online Speaker Clustering Using Incremental Learning of an Ergodic Hidden Markov Model
    Koshinaka, Takafumi
    Nagatomo, Kentaro
    Shinoda, Koichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2012, E95D (10): : 2469 - 2478