Automatic Modeling with Local Model Networks for Benchmark Processes

被引:11
作者
Belz, Julian [1 ]
Muenker, Tobias [1 ]
Heinz, Tim O. [1 ]
Kampmann, Geritt [1 ]
Nelles, Oliver [1 ]
机构
[1] Univ Siegen, Automat Control Mechatron, Siegen, Germany
关键词
Local Model Network; LMN; HILOMOT; LOLIMOT; System Identification; Benchmark Process; Bouc-Wen; Wiener-Hammerstein; Cascaded Tanks; Nonlinear Dynamic Systems; NARX; NFIR; NOBF; SYSTEM-IDENTIFICATION;
D O I
10.1016/j.ifacol.2017.08.089
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper an automated model generation framework is used to identify three nonlinear dynamic benchmark processes. The nonlinearity is approximated using tree-based local model networks (LMN) with external dynamics, which are represented by three different approaches: NARX, NFIR and NOBF. The automated method assumes no prior knowledge about the process, and aims to be a ready-to-use tool for system identification. Results are given for the different approaches and benchmark processes. The importance of the choice of training data for a good generalizing model performance is discussed. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:470 / 475
页数:6
相关论文
共 22 条
[1]  
Belz J., 2014, P 19 IFAC WORLD C CA, V47, P4128
[2]   On the Relationship Between the Enforced Convergence Criterion and the Asymptotically Optimal Laguerre Pole [J].
Dankers, Arne G. ;
Westwick, David T. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (05) :1102-1109
[3]  
Guyon Isabelle., 2006, Feature extraction: foundations and applications, V207
[4]  
Heinz T.O., 2016, COMP INT 2015 IEEE S
[5]  
Heuberger P., 2005, MODELLING IDENTIFICA
[6]  
Liu H, 2008, CH CRC DATA MIN KNOW, P3
[7]  
Munker T., 2016, IEEE WORLD C COMP IN
[8]  
Munker T., 2016, 4 IFAC INT C INT CON
[9]  
Murray-Smith R., 1995, Fourth International Conference on `Artificial Neural Networks' (Conf. Publ. No.409), P40, DOI 10.1049/cp:19950526
[10]  
NELLES O, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P3786