Quantum plasmonic and electromagnetic coupling in plasmon rulers: new opportunities for imaging and sensing at the nanoscale

被引:0
作者
Lerch, Sarah [1 ,2 ]
Reinhard, Bjoern M. [1 ,2 ]
机构
[1] Boston Univ, Dept Chem, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
来源
BIOSENSING AND NANOMEDICINE IX | 2016年 / 9930卷
关键词
Plasmon Rulers; Quantum Plasmonics; Self-Assembly; Plasmonic Molecules; Charge Transfer; Nanoplasmonics; Gold Nanoparticles; GROWTH-FACTOR RECEPTOR; SILVER NANOPARTICLES; GOLD; SPECTROSCOPY; CALIBRATION; RESONANCES; MICROSCOPY; REGIME;
D O I
10.1117/12.2238803
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gold and silver nanoparticles exhibit unique optical properties in the visible range of the electromagnetic spectrum where the incident light excites coherent collective oscillations (plasmons) of conduction band electrons. The distance dependent near-field coupling between the nanoparticles leads to spectral shifts in the far-field, which makes plasmonic molecules unique distance sensors on the nanoscale. In general, two distinct coupling regimes can be differentiated in the near-field: the classical electromagnetic coupling regime and the quantum plasmonic coupling regime at very short interparticle separations. The plasmon driven charge transfer between nanoparticles in the quantum plasmonic regime is currently of high interest for developing new non-linear spectroscopies and sensors, but the role of molecules in the gap between the nanoparticles remains insufficiently understood. We investigated the impact of DNA on the transition from the classical coupling regime to the quantum plasmonic coupling regime. We found that for separations beyond approx. 2.8 nm, classical electromagnetic coupling dominates the spectral response of coupled nanoparticles. At shorter separations, the recorded spectra are significantly blue-shifted when compared to the classical prediction, indicative of quantum plasmonic effects. The presence of the DNA was crucial to sustain the spectral blue-shifts, indicating coherent charge transfer across the DNA as main cause for the effective depolarization of the Plasmon Ruler.
引用
收藏
页数:8
相关论文
共 39 条
[1]   Competition between surface screening and size quantization for surface plasmons in nanoparticles [J].
Carmina Monreal, R. ;
Antosiewicz, Tomasz J. ;
Peter Apell, S. .
NEW JOURNAL OF PHYSICS, 2013, 15
[2]   Probing DNA Stiffness through Optical Fluctuation Analysis of Plasmon Rulers [J].
Chen, Tianhong ;
Hong, Yan ;
Reinhard, Bjoern M. .
NANO LETTERS, 2015, 15 (08) :5349-5357
[3]   Probing the Ultimate Limits of Plasmonic Enhancement [J].
Ciraci, C. ;
Hill, R. T. ;
Mock, J. J. ;
Urzhumov, Y. ;
Fernandez-Dominguez, A. I. ;
Maier, S. A. ;
Pendry, J. B. ;
Chilkoti, A. ;
Smith, D. R. .
SCIENCE, 2012, 337 (6098) :1072-1074
[4]   Isolation of discrete nanoparticle -: DNA conjugates for plasmonic applications [J].
Claridge, Shelley A. ;
Liang, Huiyang W. ;
Basu, S. Roger ;
Frechet, Jean M. J. ;
Alivisatos, A. Paul .
NANO LETTERS, 2008, 8 (04) :1202-1206
[5]   Quantifying Lipid Contents in Enveloped Virus Particles with Plasmonic Nanoparticles [J].
Feizpour, Amin ;
Yu, Xinwei ;
Akiyama, Hisashi ;
Miller, Caitlin M. ;
Edmans, Ethan ;
Gummuluru, Suryaram ;
Reinhard, Bjoern M. .
SMALL, 2015, 11 (13) :1592-1602
[6]   Mechanisms for DNA Charge Transport [J].
Genereux, Joseph C. ;
Barton, Jacqueline K. .
CHEMICAL REVIEWS, 2010, 110 (03) :1642-1662
[7]   On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation [J].
Jain, Prashant K. ;
Huang, Wenyu ;
El-Sayed, Mostafa A. .
NANO LETTERS, 2007, 7 (07) :2080-2088
[8]   Quantum Plasmonics: Optical Monitoring of DNA-Mediated Charge Transfer in Plasmon Rulers [J].
Lerch, Sarah ;
Reinhard, Bjoern M. .
ADVANCED MATERIALS, 2016, 28 (10) :2030-+
[9]   Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy [J].
Maier, SA ;
Brongersma, ML ;
Kik, PG ;
Atwater, HA .
PHYSICAL REVIEW B, 2002, 65 (19) :1-4
[10]   A generalized non-local optical response theory for plasmonic nanostructures [J].
Mortensen, N. A. ;
Raza, S. ;
Wubs, M. ;
Sondergaard, T. ;
Bozhevolnyi, S. I. .
NATURE COMMUNICATIONS, 2014, 5