WIGNER'S THEOREM IN L∞(Γ)-TYPE SPACES

被引:13
作者
Jia, Weike [1 ]
Tan, Dongni [1 ]
机构
[1] Tianjin Univ Technol, Dept Math, Tianjin 300384, Peoples R China
关键词
L-infinity(Gamma)-type spaces; Wigner's theorem; phase equivalent; PROOF; TRANSFORMATIONS; VERSION;
D O I
10.1017/S0004972717000910
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate surjective solutions of the functional equation {parallel to f (x) + f (y)parallel to, parallel to f (x) - f (y)parallel to} = {parallel to x + y parallel to, parallel to x - y parallel to} (x, y is an element of X), where f : X -> Y is a map between two real L-infinity(Gamma)-type spaces. We show that all such solutions are phase equivalent to real linear isometries. This can be considered as an extension of Wigner's theorem on symmetry for real L-infinity(Gamma)-type spaces.
引用
收藏
页码:279 / 284
页数:6
相关论文
共 50 条
  • [22] THE WIGNER PROPERTY OF SMOOTH NORMED SPACES
    Huang, Xujian
    Liu, Jiabin
    Wang, Shuming
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 110 (03) : 545 - 553
  • [23] Wigner-type theorem on transition probability preserving maps in semifinite factors
    Qian, Wenhua
    Wang, Liguang
    Wu, Wenming
    Yuan, Wei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (06) : 1773 - 1787
  • [24] An elementary proof for the non-bijective version of Wigner's theorem
    Geher, Gy. P.
    PHYSICS LETTERS A, 2014, 378 (30-31) : 2054 - 2057
  • [25] On normed spaces with the Wigner Property
    Wang, Ruidong
    Bugajewski, Dariusz
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) : 523 - 539
  • [26] Wigner's theorem and the geometry of extreme positive maps
    Grabowski, Janusz
    Kus, Marek
    Marmo, Giuseppe
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (34)
  • [27] A variant of Wigner's functional equation
    Turnsek, Aleksej
    AEQUATIONES MATHEMATICAE, 2015, 89 (04) : 949 - 956
  • [28] (No) Wigner Theorem for C*-algebras
    Landsman, Klaas
    Rang, Kitty
    REVIEWS IN MATHEMATICAL PHYSICS, 2020, 32 (07)
  • [29] A Reconstruction Theorem for Riemannian Symmetric Spaces of Noncompact Type
    Stenzel, Matthew B.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (06) : 839 - 856
  • [30] THEOREM OF WIGNER ON PRODUCTS OF POSITIVE MATRICES
    SUBRAMANIAN, R
    BHAGWAT, KV
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES SECTION A, 1979, 88 (01): : 31 - 34