WIGNER'S THEOREM IN L∞(Γ)-TYPE SPACES

被引:15
作者
Jia, Weike [1 ]
Tan, Dongni [1 ]
机构
[1] Tianjin Univ Technol, Dept Math, Tianjin 300384, Peoples R China
关键词
L-infinity(Gamma)-type spaces; Wigner's theorem; phase equivalent; PROOF; TRANSFORMATIONS; VERSION;
D O I
10.1017/S0004972717000910
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate surjective solutions of the functional equation {parallel to f (x) + f (y)parallel to, parallel to f (x) - f (y)parallel to} = {parallel to x + y parallel to, parallel to x - y parallel to} (x, y is an element of X), where f : X -> Y is a map between two real L-infinity(Gamma)-type spaces. We show that all such solutions are phase equivalent to real linear isometries. This can be considered as an extension of Wigner's theorem on symmetry for real L-infinity(Gamma)-type spaces.
引用
收藏
页码:279 / 284
页数:6
相关论文
共 12 条
[1]   An elementary proof for the non-bijective version of Wigner's theorem [J].
Geher, Gy. P. .
PHYSICS LETTERS A, 2014, 378 (30-31) :2054-2057
[2]   A new proof of Wigner's theorem [J].
Gyory, M .
REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) :159-167
[3]  
Huang X., PUBL MATH D IN PRESS
[4]   Wigner's theorem revisited [J].
Maksa, Gyula ;
Pales, Zsolt .
PUBLICATIONES MATHEMATICAE DEBRECEN, 2012, 81 (1-2) :243-249
[5]  
Mazur S., 1932, CR Acad. Sci. Paris, V194, P946
[6]   Orthogonality preserving transformations on indefinite inner product spaces:: Generalization of Uhlhorn's version of Wigner's theorem [J].
Molnár, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 194 (02) :248-262
[7]   An alternative proof of Wigner theorem on quantum transformations based on elementary complex analysis [J].
Mouchet, Amaury .
PHYSICS LETTERS A, 2013, 377 (39) :2709-2711
[8]  
Rtz J., 1996, Aequationes Math, V52, P1, DOI DOI 10.1007/BF01818323
[9]   A DIRECT PROOF OF WIGNER THEOREM ON MAPS WHICH PRESERVE TRANSITION-PROBABILITIES BETWEEN PURE STATES OF QUANTUM-SYSTEMS [J].
SHARMA, CS ;
ALMEIDA, DF .
ANNALS OF PHYSICS, 1990, 197 (02) :300-309
[10]   Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics [J].
Simon, R. ;
Mukunda, N. ;
Chaturvedi, S. ;
Srinivasan, V. .
PHYSICS LETTERS A, 2008, 372 (46) :6847-6852