Periodic solutions of singular radially symmetric systems with superlinear growth

被引:24
作者
Fonda, Alessandro [1 ]
Toader, Rodica [2 ]
Zanolin, Fabio [3 ]
机构
[1] Univ Trieste, Dipartimento Matemat & Informat, I-34127 Trieste, Italy
[2] Univ Udine, Dipartimento Ingn Civile & Architettura, I-33100 Udine, Italy
[3] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
关键词
Periodic solutions; Systems with singularity; Nonlinear dynamics; Continuation theorems; DIFFERENTIAL-EQUATIONS; DYNAMICAL-SYSTEMS; ORBITS;
D O I
10.1007/s10231-010-0178-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of infinitely many periodic solutions for periodically forced radially symmetric systems of second-order ODE's, with a singularity of repulsive type, where the nonlinearity has a superlinear growth at infinity. These solutions have periods, which are large integer multiples of the period of the forcing, and rotate exactly once around the origin in their period time, while having a fast oscillating radial component. Analogous results hold in the case of an annular potential well.
引用
收藏
页码:181 / 204
页数:24
相关论文
共 41 条
[1]  
Ambrosetti A., 1993, Progr. Nonlinear Differential Equations Appl., V10
[2]  
[Anonymous], 1978, GRAD TEXTS MATH
[3]  
[Anonymous], 1973, Rocky Mountain J. Math., DOI 10.1216/RMJ-1973-3-2-161
[4]  
[Anonymous], LECT NOTES MATH
[5]  
BENCI V, 1984, ANN I H POINCARE-AN, V1, P379
[6]   A CONTINUATION APPROACH TO SUPERLINEAR PERIODIC BOUNDARY-VALUE-PROBLEMS [J].
CAPIETTO, A ;
MAWHIN, J ;
ZANOLIN, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 88 (02) :347-395
[7]  
Capietto A, 1992, J NIGER MATH SOC, V11, P83
[8]  
Capietto A., 1994, TOPOL METHOD NONL AN, V3, P81
[9]  
Capietto A, 1995, TOPOL METHOD NONL AN, V6, P175
[10]   LAGRANGIAN SYSTEMS IN THE PRESENCE OF SINGULARITIES [J].
CAPOZZI, A ;
GRECO, C ;
SALVATORE, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (01) :125-130