Voltage-driven multistability and chaos in magnetic films

被引:6
作者
Contreras-Celada, Susana [1 ]
Clerc, Marcel G. [2 ,3 ]
Coulibaly, Saliya [4 ]
Rojas, Rene G. [1 ]
Leon, Alejandro O. [5 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Inst Fis, Casilla 4059, Valparaiso, Chile
[2] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, Casilla 487-3, Santiago, Chile
[3] Univ Chile, Fac Ciencias Fis & Matemat, Millennium Inst Res Opt, Casilla 487-3, Santiago, Chile
[4] Univ Lille, UMR 8523, CNRS, PhLAM Phys Lasers Atomes & Mol, F-59000 Lille, France
[5] Univ Tecnol Metropolitana, Fac Ciencias Nat Matemat & Medio Ambiente, Dept Fis, Palmeras 3360, Santiago 7800003, Chile
关键词
Voltage-controlled magnetic anisotropy; Magnetization dynamics; Landau-lifshitz equation; Nano-oscillators; Chaos; Dynamical systems;
D O I
10.1016/j.jmmm.2022.169793
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The control of magnetization dynamics has allowed numerous technological applications. Magnetization dynamics can be excited by, e.g., alternating magnetic fields, charge and spin currents, and a voltageinduced control of interfacial properties. An example of the last mechanism is the voltage-controlled magnetic anisotropy effect, which can induce magnetization precessions and switchings with low-power consumption. Time-dependent voltage-controlled magnetic anisotropy can induce complex dynamic behaviors for magnetization. This work studies the magnetization dynamics of a single magnetic nano-oscillator forced with a time-dependent voltage-controlled magnetic anisotropy. Unexpectedly, the oscillator displays multistable regimes, i.e., distinct initial conditions evolve towards different oscillatory states. When voltage is changed the oscillatory state exhibits period-doubling route to chaos. The chaotic behavior is numerically demonstrated by the determination of the largest Lyapunov exponent.
引用
收藏
页数:5
相关论文
共 47 条
[11]   Magnetization vector manipulation by electric fields [J].
Chiba, D. ;
Sawicki, M. ;
Nishitani, Y. ;
Nakatani, Y. ;
Matsukura, F. ;
Ohno, H. .
NATURE, 2008, 455 (7212) :515-518
[12]   Voltage-Driven Magnetization Switching via Dirac Magnetic Anisotropy and Spin-Orbit Torque in Topological-Insulator-Based Magnetic Heterostructures [J].
Chiba, Takahiro ;
Komine, Takashi .
PHYSICAL REVIEW APPLIED, 2020, 14 (03)
[13]   Chimera-type states induced by local coupling [J].
Clerc, M. G. ;
Coulibaly, S. ;
Ferre, M. A. ;
Garcia-Nustes, M. A. ;
Rojas, R. G. .
PHYSICAL REVIEW E, 2016, 93 (05)
[14]  
Ditto W, 2002, NATURE, V415, P736, DOI 10.1038/415736b
[15]   Self-organization in the one-dimensional Landau-Lifshitz-Gilbert-Slonczewski equation with non-uniform anisotropy fields [J].
Garcia-Nustes, Monica A. ;
Humire, Fernando R. ;
Leon, Alejandro O. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96
[16]   Extreme Events in Lasers with Modulation of the Field Polarization [J].
Gomel, Alexis ;
Boyer, Jean Marc ;
Metayer, Cyrille ;
Tredicce, Jorge R. .
ADVANCES IN CONDENSED MATTER PHYSICS, 2019, 2019
[17]  
Guckenheimer J., 1983, Applied Mathematical Sciences, P117, DOI [10.1007/978-1-4612-1140-2, DOI 10.1007/978-1-4612-1140-2, 10.1007/978-1-4612-1140-2_3]
[18]   Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction [J].
Kanai, S. ;
Yamanouchi, M. ;
Ikeda, S. ;
Nakatani, Y. ;
Matsukura, F. ;
Ohno, H. .
APPLIED PHYSICS LETTERS, 2012, 101 (12)
[19]   Microwave oscillations of a nanomagnet driven by a spin-polarized current [J].
Kiselev, SI ;
Sankey, JC ;
Krivorotov, IN ;
Emley, NC ;
Schoelkopf, RJ ;
Buhrman, RA ;
Ralph, DC .
NATURE, 2003, 425 (6956) :380-383
[20]   Periodic magnetization structures generated by transverse spin current in magnetic nanowires [J].
Kravchuk, Volodymyr P. ;
Volkov, Oleksii M. ;
Sheka, Denis D. ;
Gaididei, Yuri .
PHYSICAL REVIEW B, 2013, 87 (22)