Voltage-driven multistability and chaos in magnetic films

被引:6
作者
Contreras-Celada, Susana [1 ]
Clerc, Marcel G. [2 ,3 ]
Coulibaly, Saliya [4 ]
Rojas, Rene G. [1 ]
Leon, Alejandro O. [5 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Inst Fis, Casilla 4059, Valparaiso, Chile
[2] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, Casilla 487-3, Santiago, Chile
[3] Univ Chile, Fac Ciencias Fis & Matemat, Millennium Inst Res Opt, Casilla 487-3, Santiago, Chile
[4] Univ Lille, UMR 8523, CNRS, PhLAM Phys Lasers Atomes & Mol, F-59000 Lille, France
[5] Univ Tecnol Metropolitana, Fac Ciencias Nat Matemat & Medio Ambiente, Dept Fis, Palmeras 3360, Santiago 7800003, Chile
关键词
Voltage-controlled magnetic anisotropy; Magnetization dynamics; Landau-lifshitz equation; Nano-oscillators; Chaos; Dynamical systems;
D O I
10.1016/j.jmmm.2022.169793
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The control of magnetization dynamics has allowed numerous technological applications. Magnetization dynamics can be excited by, e.g., alternating magnetic fields, charge and spin currents, and a voltageinduced control of interfacial properties. An example of the last mechanism is the voltage-controlled magnetic anisotropy effect, which can induce magnetization precessions and switchings with low-power consumption. Time-dependent voltage-controlled magnetic anisotropy can induce complex dynamic behaviors for magnetization. This work studies the magnetization dynamics of a single magnetic nano-oscillator forced with a time-dependent voltage-controlled magnetic anisotropy. Unexpectedly, the oscillator displays multistable regimes, i.e., distinct initial conditions evolve towards different oscillatory states. When voltage is changed the oscillatory state exhibits period-doubling route to chaos. The chaotic behavior is numerically demonstrated by the determination of the largest Lyapunov exponent.
引用
收藏
页数:5
相关论文
共 47 条
[1]   Chimera states for coupled oscillators [J].
Abrams, DM ;
Strogatz, SH .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :174102-1
[2]  
[Anonymous], 1993, Chaos in Dynamical Systems
[3]   STABILITY DIAGRAM OF THE PHASE-LOCKED SOLITONS IN THE PARAMETRICALLY DRIVEN, DAMPED NONLINEAR SCHRODINGER-EQUATION [J].
BARASHENKOV, IV ;
BOGDAN, MM ;
KOROBOV, VI .
EUROPHYSICS LETTERS, 1991, 15 (02) :113-118
[4]   Transition from the macrospin to chaotic behavior by a spin-torque driven magnetization precession of a square nanoelement [J].
Berkov, D ;
Gorn, N .
PHYSICAL REVIEW B, 2005, 71 (05)
[5]   Flaming 2π kinks in parametrically driven systems [J].
Berrios-Caro, E. ;
Clerc, M. G. ;
Leon, A. O. .
PHYSICAL REVIEW E, 2016, 94 (05)
[6]  
Bertotti G, 2009, NONLINEAR MAGNETIZATION DYNAMICS IN NANOSYSTEMS
[7]   Chaotic dynamics of a magnetic nanoparticle [J].
Bragard, J. ;
Pleiner, H. ;
Suarez, O. J. ;
Vargas, P. ;
Gallas, J. A. C. ;
Laroze, D. .
PHYSICAL REVIEW E, 2011, 84 (03)
[8]   TIGHT-BINDING APPROACH TO THE ORBITAL MAGNETIC-MOMENT AND MAGNETOCRYSTALLINE ANISOTROPY OF TRANSITION-METAL MONOLAYERS [J].
BRUNO, P .
PHYSICAL REVIEW B, 1989, 39 (01) :865-868
[9]   Chaotic patterns and localized states in spin valves [J].
Cabanas, Ana M. ;
Clerc, Marcel G. ;
Laroze, David ;
Leon, Alejandro O. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 476 :589-596
[10]   Parametric Resonance of Magnetization Excited by Electric Field [J].
Chen, Yu-Jin ;
Lee, Han Kyu ;
Verba, Roman ;
Katine, Jordan A. ;
Barsukov, Igor ;
Tiberkevich, Vasil ;
Xiao, John Q. ;
Slavin, Andrei N. ;
Krivorotov, Ilya N. .
NANO LETTERS, 2017, 17 (01) :572-577