An Interface-Unfitted Finite Element Method for Elliptic Interface Optimal Control Problems

被引:8
作者
Yang, Chaochao [1 ,2 ]
Wang, Tao [1 ]
Xie, Xiaoping [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Sichuan, Peoples R China
[2] Chongqing Univ Technol, Sch Sci, Chongqing 400054, Peoples R China
基金
中国国家自然科学基金;
关键词
Interface equations; interface control; variational discretization concept; cut finite element method; CONSTRAINED OPTIMAL-CONTROL; ERROR ESTIMATION; A-PRIORI; APPROXIMATION; CONVERGENCE; EQUATIONS; ROBUST; JUMP;
D O I
10.4208/nmtma.OA-2018-0031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops and analyses numerical approximation for linear-quadratic optimal control problems governed by elliptic interface equations. We adopt variational discretization concept to discretize optimal control problems, and apply an interface-unfitted finite element method due to [A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg., 191(47-48): 5537-5552, 2002] to discretize the corresponding state and adjoint equations, where piecewise cut basis functions around interface are enriched into standard conforming finite element space. Optimal error estimates in both L-2 norm and a mesh-dependent norm are derived for the optimal state, co-state and control under different regularity assumptions. Numerical results verify the theoretical results.
引用
收藏
页码:727 / 749
页数:23
相关论文
共 60 条
[31]   Optimal a priori estimates for higher order finite elements for elliptic interface problems [J].
Li, Jingzhi ;
Melenk, Jens Markus ;
Wohlmuth, Barbara ;
Zou, Jun .
APPLIED NUMERICAL MATHEMATICS, 2010, 60 (1-2) :19-37
[32]   Adaptive finite element approximation for distributed elliptic optimal control problems [J].
Li, R ;
Liu, WB ;
Ma, HP ;
Tang, T .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (05) :1321-1349
[33]  
Li Z., 2006, IMMERSED INTERFACE M
[34]   New Cartesian grid methods for interface problems using the finite element formulation [J].
Li, ZL ;
Lin, T ;
Wu, XH .
NUMERISCHE MATHEMATIK, 2003, 96 (01) :61-98
[35]  
Lin T, 2007, DISCRETE CONT DYN-B, V7, P807
[36]   PARTIALLY PENALIZED IMMERSED FINITE ELEMENT METHODS FOR ELLIPTIC INTERFACE PROBLEMS [J].
Lin, Tao ;
Lin, Yanping ;
Zhang, Xu .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :1121-1144
[37]  
Lions J. L., 1972, Optimal Control of Systems Governed by Partial Differential Equations
[38]   A Second Order Ghost Fluid Method for an Interface Problem of the Poisson Equation [J].
Liu, Cheng ;
Hu, Changhong .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 22 (04) :965-996
[39]  
Liu WB, 2009, J COMPUT MATH, V27, P97
[40]   The partition of unity finite element method: Basic theory and applications [J].
Melenk, JM ;
Babuska, I .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) :289-314