An Interface-Unfitted Finite Element Method for Elliptic Interface Optimal Control Problems

被引:8
作者
Yang, Chaochao [1 ,2 ]
Wang, Tao [1 ]
Xie, Xiaoping [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Sichuan, Peoples R China
[2] Chongqing Univ Technol, Sch Sci, Chongqing 400054, Peoples R China
基金
中国国家自然科学基金;
关键词
Interface equations; interface control; variational discretization concept; cut finite element method; CONSTRAINED OPTIMAL-CONTROL; ERROR ESTIMATION; A-PRIORI; APPROXIMATION; CONVERGENCE; EQUATIONS; ROBUST; JUMP;
D O I
10.4208/nmtma.OA-2018-0031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops and analyses numerical approximation for linear-quadratic optimal control problems governed by elliptic interface equations. We adopt variational discretization concept to discretize optimal control problems, and apply an interface-unfitted finite element method due to [A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg., 191(47-48): 5537-5552, 2002] to discretize the corresponding state and adjoint equations, where piecewise cut basis functions around interface are enriched into standard conforming finite element space. Optimal error estimates in both L-2 norm and a mesh-dependent norm are derived for the optimal state, co-state and control under different regularity assumptions. Numerical results verify the theoretical results.
引用
收藏
页码:727 / 749
页数:23
相关论文
共 60 条
[1]  
[Anonymous], GRADUATE STUDIES MAT
[2]  
[Anonymous], 1995, THESIS
[3]   FITTED AND UNFITTED FINITE-ELEMENT METHODS FOR ELLIPTIC-EQUATIONS WITH SMOOTH INTERFACES [J].
BARRETT, JW ;
ELLIOTT, CM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (03) :283-300
[4]   Adaptive finite element methods for optimal control of partial differential equations: Basic concept [J].
Becker, R ;
Kapp, H ;
Rannacher, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :113-132
[5]   A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity [J].
Becker, Roland ;
Burman, Erik ;
Hansbo, Peter .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (41-44) :3352-3360
[6]   A review of extended/generalized finite element methods for material modeling [J].
Belytschko, Ted ;
Gracie, Robert ;
Ventura, Giulio .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2009, 17 (04)
[7]   A finite element method for interface problems in domains with smooth boundaries and interfaces [J].
Bramble, JH ;
King, JT .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (02) :109-138
[8]  
Brenner S.C., 2008, TEXTS APPL MATH, V15
[9]  
Brezies H., 2011, Functional Analysis. Sobolev Spaces and Partial Differential Equations, DOI [10.1007/978-0-387-70914-7, DOI 10.1007/978-0-387-70914-7]
[10]   CutFEM: Discretizing geometry and partial differential equations [J].
Burman, Erik ;
Claus, Susanne ;
Hansbo, Peter ;
Larson, Mats G. ;
Massing, Andre .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 104 (07) :472-501