Inverse Determinant Sums and Connections Between Fading Channel Information Theory and Algebra

被引:14
作者
Vehkalahti, Roope [1 ]
Lu, Hsiao-Feng [2 ]
Luzzi, Laura [3 ]
机构
[1] Univ Turku, Dept Math, Turku 20100, Finland
[2] Natl Chiao Tung Univ, Dept Elect Engn, Hsinchu 300, Taiwan
[3] Univ Cergy Pontoise, CNRS, ENSEA, Lab ETIS, F-95014 Cergy Pontoise, France
基金
芬兰科学院;
关键词
Algebra; diversity-multiplexing gain tradeoff (DMT); division algebra; Lie groups; multiple-input multiple-output (MIMO); number theory; space-time block codes (STBCs); unit group; Zeta functions; SPACE-TIME CODES; DIVERSITY TECHNIQUE; ORDERS;
D O I
10.1109/TIT.2013.2266396
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work considers inverse determinant sums, which arise from the union bound on the error probability, as a tool for designing and analyzing algebraic space-time block codes. A general framework to study these sums is established, and the connection between asymptotic growth of inverse determinant sums and the diversity-multiplexing gain tradeoff is investigated. It is proven that the growth of the inverse determinant sum of a division algebra-based space-time code is completely determined by the growth of the unit group. This reduces the inverse determinant sum analysis to studying certain asymptotic integrals in Lie groups. Using recent methods from ergodic theory, a complete classification of the inverse determinant sums of the most well-known algebraic space-time codes is provided. The approach reveals an interesting and tight relation between diversity-multiplexing gain tradeoff and point counting in Lie groups.
引用
收藏
页码:6060 / 6082
页数:23
相关论文
共 41 条
[1]   A simple transmit diversity technique for wireless communications [J].
Alamouti, SM .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1998, 16 (08) :1451-1458
[2]  
[Anonymous], 2001, DIFFERENTIAL GEOMETR
[3]  
[Anonymous], 2010, ANN MATH STUDIES
[4]  
Belfiore Jean-Claude, 2011, IEEE Information Theory Workshop (ITW 2011), P1, DOI 10.1109/ITW.2011.6089376
[5]  
Belfiore J.-C, ERROR PROBABILITY AP
[6]   Signal space diversity: A power- and bandwidth-efficient diversity technique for the Rayleigh fading channel [J].
Boutros, J ;
Viterbo, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1453-1467
[7]  
BUSHNELL CJ, 1981, J REINE ANGEW MATH, V327, P156
[8]   SOLOMON CONJECTURES AND THE LOCAL FUNCTIONAL-EQUATION FOR ZETA-FUNCTIONS OF ORDERS [J].
BUSHNELL, CJ ;
REINER, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 2 (02) :306-310
[9]   DENSITY OF INTEGER POINTS ON AFFINE HOMOGENEOUS VARIETIES [J].
DUKE, W ;
RUDNICK, Z ;
SARNAK, P .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (01) :143-179
[10]   Explicit space-time codes achieving the diversity-multiplexing gain tradeoff [J].
Elia, Petros ;
Kumar, K. Raj ;
Pawar, Sameer A. ;
Kumar, P. Vijay ;
Lu, Hsiao-Feng .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) :3869-3884