Additive manufacturing for bone tissue engineering scaffolds

被引:121
作者
Qu, Huawei [1 ]
机构
[1] Harbin Inst Technol, Sch Mechatron Engn, 92 West Dazhi St, Harbin 150001, Peoples R China
来源
MATERIALS TODAY COMMUNICATIONS | 2020年 / 24卷 / 24期
关键词
Additive manufacturing; Bone tissue engineering; Scaffolds; TITANIUM-ALLOY SCAFFOLDS; CALCIUM-PHOSPHATE; MECHANICAL-PROPERTIES; HIERARCHICAL STRUCTURE; COMPOSITE SCAFFOLDS; POROUS SCAFFOLDS; GROWTH-FACTOR; IN-VIVO; DESIGN; DEPOSITION;
D O I
10.1016/j.mtcomm.2020.101024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Large bone defects, which occur due to various causes, have substantially affected people's health and quality of life. Bone tissue engineering (BTE) is a promising approach for repairing or replacing bone injuries. The aim of BTE scaffolds is to mimic the biological function and structure of the natural bone extracellular matrix (ECM), which provides a three-dimensional (3D) environment for cell adsorption, proliferation and differentiation. Significant advances in materials science, computer-aided design (CAD) and biomedical engineering have facilitated BTE scaffolds. This paper describes the requirements of BTE scaffolds and highlights the important role of additive manufacturing (AM) technologies in building bridges between biomaterials, CAD models and additives, and BTE scaffolds. It reviews various AM technologies that are used to fabricate BTE scaffolds. These technologies are divided into seven categories: (1) stereolithography (SLA), (2) powder bed fusion (PBF), (3) binder jetting (BJ), (4) material extrusion (ME), (5) material jetting (MJ), (6) volumetric printing (VP) and (7) 4D printing (4DP). The characteristics, raw materials, accuracy, cost, advantages and disadvantages of the AM technologies are discussed. Several recommendations for future research are presented.
引用
收藏
页数:16
相关论文
共 119 条
[1]   Anisotropic material properties of fused deposition modeling ABS [J].
Ahn, SH ;
Montero, M ;
Odell, D ;
Roundy, S ;
Wright, PK .
RAPID PROTOTYPING JOURNAL, 2002, 8 (04) :248-257
[2]   Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution [J].
Ali, Muhammad ;
Pages, Emeline ;
Ducom, Alexandre ;
Fontaine, Aurelien ;
Guillemot, Fabien .
BIOFABRICATION, 2014, 6 (04)
[3]   Metallic Scaffolds for Bone Regeneration [J].
Alvarez, Kelly ;
Nakajima, Hideo .
MATERIALS, 2009, 2 (03) :790-832
[4]  
[Anonymous], 1986, US Patent
[5]  
[Anonymous], 2015, J NANOMATER
[6]  
Astm Iso., 2015, ASTM52900 15 STANDAR
[7]   4D Printing with Mechanically Robust, Thermally Actuating Hydrogels [J].
Bakarich, Shannon E. ;
Gorkin, Robert, III ;
Panhuis, Marc In Het ;
Spinks, Geoffrey M. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2015, 36 (12) :1211-1217
[8]   Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone [J].
Barth, Holly D. ;
Zimmermann, Elizabeth A. ;
Schaible, Eric ;
Tang, Simon Y. ;
Alliston, Tamara ;
Ritchie, Robert O. .
BIOMATERIALS, 2011, 32 (34) :8892-8904
[9]   Volumetric Bioprinting of Complex Living-Tissue Constructs within Seconds [J].
Bernal, Paulina Nunez ;
Delrot, Paul ;
Loterie, Damien ;
Li, Yang ;
Malda, Jos ;
Moser, Christophe ;
Levato, Riccardo .
ADVANCED MATERIALS, 2019, 31 (42)
[10]   METHODS OF IMAGE-RECONSTRUCTION FROM PROJECTIONS APPLIED TO CONFORMATION RADIOTHERAPY [J].
BORTFELD, T ;
BURKELBACH, J ;
BOESECKE, R ;
SCHLEGEL, W .
PHYSICS IN MEDICINE AND BIOLOGY, 1990, 35 (10) :1423-1434