An in vitro protocol to study the effect of hyperglycemia on intracellular redox signaling in human retinal pigment epithelial (ARPE-19) cells

被引:8
|
作者
Shivarudrappa, Arpitha Haranahalli [1 ]
Gopal, Sowmya Shree [1 ]
Ponesakki, Ganesan [1 ]
机构
[1] CFTRI, CSIR, Dept Mol Nutr, Mysore 570020, Karnataka, India
关键词
Glucose; ARPE-19; Oxidative stress; Redox transcription factors; Antioxidant enzymes; OXIDATIVE STRESS; HIGH GLUCOSE; NRF2; DAMAGE; EXPRESSION; INDUCTION; AUTOPHAGY; RESPONSES; PROTECTS; SURVIVAL;
D O I
10.1007/s11033-019-04597-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DMEM/F12 nutrient mixture, a recommended media for ARPE-19 culture, contains glucose concentration of 17.5mM. But, several recent studies employed normal glucose media (5.5mM) that was shown to affect the growth and function of ARPE-19 cells. Here, we set a protocol to study the effect of hyperglycemia on intracellular oxidative stress and redox status in ARPE-19 using DMEM/F12 as control. The WST-1 assay was performed to analyze the viability of ARPE-19 upon glucose treatment. The intracellular oxidative stress was measured by a dichlorofluorescein assay. The mitochondrial membrane potential (MMP) was monitored by using a JC-10 MMP assay kit. The expression of antioxidant marker proteins was analyzed by western blotting. Exogenous addition of glucose (7.5 and 12.5mM) for 24 and 48h did not change the viability and morphology of ARPE-19 cells. Hyperglycemia increased intracellular ROS level and decreased MMP in a dose-dependent manner. High-glucose treatment for 24h down-regulated the protein expression of redox-specific transcription factors Nrf-2, XBP-1 and NF-B, and subsequently decreased the expression of HO-1, catalase, and SOD-2. This study offers baseline information for the subsequent use of DMEM/F12 nutrient mixture to study glucose-mediated changes in intracellular oxidative stress and redox status of ARPE-19 without affecting its basic functions.
引用
收藏
页码:1263 / 1274
页数:12
相关论文
共 50 条
  • [1] An in vitro protocol to study the effect of hyperglycemia on intracellular redox signaling in human retinal pigment epithelial (ARPE-19) cells
    Arpitha Haranahalli Shivarudrappa
    Sowmya Shree Gopal
    Ganesan Ponesakki
    Molecular Biology Reports, 2019, 46 : 1263 - 1274
  • [2] Glucocorticoids and survival of retinal pigment epithelial cells (ARPE-19) in vitro
    Marquioni Ramella, Melisa Daniela Daniela
    Tate, Pablo S.
    Bachor, Tomas P.
    Marazita, Mariela C.
    Suburo, Angela M.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [3] The effect of clonidine on VEGF expression in human retinal pigment epithelial cells (ARPE-19)
    Kazuhiko Watanabe
    Xue-Yun Zhang
    Kiyotaka Kitagawa
    Tatsuya Yunoki
    Atsushi Hayashi
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2009, 247 : 207 - 213
  • [4] The effect of clonidine on VEGF expression in human retinal pigment epithelial cells (ARPE-19)
    Watanabe, Kazuhiko
    Zhang, Xue-Yun
    Kitagawa, Kiyotaka
    Yunoki, Tatsuya
    Hayashi, Atsushi
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2009, 247 (02) : 207 - 213
  • [5] Proteomic comparison of dedifferentiated and differentiated ARPE-19 cells with human retinal pigment epithelial cells
    Warburton, S
    Chen, Z
    Southwick, K
    Thulin, CD
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 : U311 - U311
  • [6] Evaluation of role of human retinal pigment epithelial cell (ARPE-19)
    Strunnikova, NV
    Csaky, KG
    MOLECULAR BIOLOGY OF THE CELL, 2001, 12 : 196A - 196A
  • [7] Cell cycle regulation by bevacizumab in ARPE-19 human retinal pigment epithelial cells
    Kuo, Chien-Neng
    Chen, Chung-Yi
    Lai, Chen-Hsiung
    Lai, Li-Ju
    Wu, Pei-Chen
    Hung, Chia-Hui
    Chen, Ching-Hsein
    MOLECULAR MEDICINE REPORTS, 2012, 6 (04) : 701 - 704
  • [8] AdipoRon negatively regulates proliferation and migration of ARPE-19 human retinal pigment epithelial cells
    Mallardo, Marta
    Costagliola, Ciro
    Nigro, Ersilia
    Daniele, Aurora
    PEPTIDES, 2021, 146
  • [9] Selective Delivery of Xanthophylls to Human Retinal Pigment Epithelial Cells (ARPE-19) via Human Lipoproteins
    Thomas, Sara
    Harrison, Earl H.
    FASEB JOURNAL, 2016, 30
  • [10] ARPE-19, a human retinal pigment epithelial cell line with differentiated properties
    Dunn, KC
    AotakiKeen, AE
    Putkey, FR
    Hjelmeland, LM
    EXPERIMENTAL EYE RESEARCH, 1996, 62 (02) : 155 - 169