Parametric POD-Galerkin model order reduction with a greedy algorithm for the time-domain Maxwell's equations

被引:0
|
作者
Li, Kun [1 ]
Huang, Ting-Zhu [1 ]
Li, Liang [1 ]
Lanteri, Stephane [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[2] INRIA, 2004 Route Lucioles,BP 93, F-06902 Sophia Antipolis, France
关键词
parametric reduced order model; proper orthogonal decomposition; time-domain Maxwell's equations; discontinuous Galerkin method; greedy algorithm;
D O I
10.23919/aces48530.2019.9060734
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work we report a parametric reduced order model (ROM) based on the proper orthogonal decomposition (POD) method with Galerkin projection for solving the system of time-domain Maxwell's equations. In particular, we introduce a residual-based estimation of the error associated with the ROM. Moreover, a greedy algorithm for the snapshot selection in the parameter space is developed. We investigate the behavior of the parametric POD-Galerkin ROM by considering the scattering of a plane wave by a 2-D multi-layer heterogeneous medium.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Decomposition methods for time-domain Maxwell's equations
    Huang, Zhi-Xiang
    Sha, Wei E. I.
    Wu, Xian-Liang
    Chen, Ming-Sheng
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (09) : 1695 - 1704
  • [22] POD-Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation
    Strazzullo, Maria
    Ballarin, Francesco
    Rozza, Gianluigi
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (03)
  • [23] Parallel higher-order-compact time-domain solutions to Maxwell's equations
    Hayes, PR
    O'Keefe, M
    Gopinath, A
    1999 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-4, 1999, : 1285 - 1288
  • [24] Designing high-order, time-domain numerical solvers for Maxwell's equations
    Young, JL
    Nystrom, JF
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - ANTENNAS: GATEWAYS TO THE GLOBAL NETWORK, VOLS 1-4, 1998, : 546 - 549
  • [25] A Compact Symplectic High-Order Scheme for Time-Domain Maxwell's Equations
    Wang, Jianying
    Liu, Peng
    Long, Yunliang
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2010, 9 : 371 - 374
  • [26] Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell's equations
    Montseny, E.
    Pernet, S.
    Ferrieres, X.
    Cohen, G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (14) : 6795 - 6820
  • [27] An implicit leap-frog discontinuous Galerkin method for the time-domain Maxwell's equations in metamaterials
    Li, Jichun
    Waters, Jiajia Wang
    Machorro, Eric A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 223 : 43 - 54
  • [28] Discontinuous Galerkin time-domain solution of Maxwell's equations on locally refined grids with fictitious domains
    Bouquet, A.
    Dedeban, C.
    Piperno, S.
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2010, 29 (03) : 578 - 601
  • [29] A meshless time-domain algorithm for solving the 3-D Maxwell's equations
    Gao, Yukun
    Chen, Hongquan
    Dianbo Kexue Xuebao/Chinese Journal of Radio Science, 2015, 30 (02): : 257 - 263
  • [30] The pseudospectral time-domain (PSTD) method: A new algorithm for solutions of Maxwell's equations
    Liu, QH
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 1997, VOLS 1-4, 1997, : 122 - 125