Parametric POD-Galerkin model order reduction with a greedy algorithm for the time-domain Maxwell's equations

被引:0
|
作者
Li, Kun [1 ]
Huang, Ting-Zhu [1 ]
Li, Liang [1 ]
Lanteri, Stephane [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[2] INRIA, 2004 Route Lucioles,BP 93, F-06902 Sophia Antipolis, France
关键词
parametric reduced order model; proper orthogonal decomposition; time-domain Maxwell's equations; discontinuous Galerkin method; greedy algorithm;
D O I
10.23919/aces48530.2019.9060734
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work we report a parametric reduced order model (ROM) based on the proper orthogonal decomposition (POD) method with Galerkin projection for solving the system of time-domain Maxwell's equations. In particular, we introduce a residual-based estimation of the error associated with the ROM. Moreover, a greedy algorithm for the snapshot selection in the parameter space is developed. We investigate the behavior of the parametric POD-Galerkin ROM by considering the scattering of a plane wave by a 2-D multi-layer heterogeneous medium.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] POD-based model order reduction with an adaptive snapshot selection for a discontinuous Galerkin approximation of the time-domain Maxwell's equations
    Li, Kun
    Huang, Ting-Zhu
    Li, Liang
    Lanteri, Stephane
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 396 : 106 - 128
  • [2] Parametric POD-Galerkin Model Order Reduction for Unsteady-State Heat Transfer Problems
    Georgaka, Sokratia
    Stabile, Giovanni
    Rozza, Gianluigi
    Bluck, Michael J.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (01) : 1 - 32
  • [3] Discontinuous Galerkin method for the time-domain Maxwell's equations
    Kabakian, AV
    Shankar, VY
    Hall, VF
    COMPUTATIONAL FLUID DYNAMICS 2002, 2003, : 153 - 158
  • [4] A NON-INTRUSIVE MODEL ORDER REDUCTION APPROACH FOR PARAMETERIZED TIME-DOMAIN MAXWELL'S EQUATIONS
    Li, Kun
    Huang, Ting-Zhu
    Li, Liang
    Zhao, Ying
    Lanteri, Stephane
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (01): : 449 - 473
  • [5] POD-Galerkin Model Order Reduction for Parametrized Nonlinear Time Dependent Optimal Flow Control: an Application to Shallow Water Equations
    Strazzullo, Maria
    Ballarin, Francesco
    Rozza, Gianluigi
    JOURNAL OF NUMERICAL MATHEMATICS, 2022, 30 (01) : 63 - 84
  • [6] The Discontinuous Galerkin Time-Domain method for Maxwell's equations with anisotropic materials
    Koenig, Michael
    Busch, Kurt
    Niegemann, Jens
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2010, 8 (04) : 303 - 309
  • [7] Interior Penalty Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations
    Dosopoulos, Stylianos
    Lee, Jin-Fa
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3512 - 3515
  • [8] Fast Time-Domain Analysis of Darwin Model of Maxwell's Equations Using Arnoldi-Based Model Order Reduction
    Hiruma, Shingo
    Igarashi, Hajime
    IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (09)
  • [9] A Nodal Continuous-Discontinuous Galerkin Time-Domain Method for Maxwell's Equations
    Diaz Angulo, Luis
    Alvarez, Jesus
    Teixeira, Fernando L.
    Fernandez Pantoja, M.
    Garcia, Salvador G.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (10) : 3081 - 3093
  • [10] A reduced-order DG formulation based on POD method for the time-domain Maxwell's equations in dispersive media
    Li, Kun
    Huang, Ting-Zhu
    Li, Liang
    Lanteri, Stephane
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 336 : 249 - 266