Parametric POD-Galerkin model order reduction with a greedy algorithm for the time-domain Maxwell's equations

被引:0
|
作者
Li, Kun [1 ]
Huang, Ting-Zhu [1 ]
Li, Liang [1 ]
Lanteri, Stephane [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[2] INRIA, 2004 Route Lucioles,BP 93, F-06902 Sophia Antipolis, France
来源
2019 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM - CHINA (ACES), VOL 1 | 2019年
关键词
parametric reduced order model; proper orthogonal decomposition; time-domain Maxwell's equations; discontinuous Galerkin method; greedy algorithm;
D O I
10.23919/aces48530.2019.9060734
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work we report a parametric reduced order model (ROM) based on the proper orthogonal decomposition (POD) method with Galerkin projection for solving the system of time-domain Maxwell's equations. In particular, we introduce a residual-based estimation of the error associated with the ROM. Moreover, a greedy algorithm for the snapshot selection in the parameter space is developed. We investigate the behavior of the parametric POD-Galerkin ROM by considering the scattering of a plane wave by a 2-D multi-layer heterogeneous medium.
引用
收藏
页数:2
相关论文
共 26 条
  • [1] POD-based model order reduction with an adaptive snapshot selection for a discontinuous Galerkin approximation of the time-domain Maxwell's equations
    Li, Kun
    Huang, Ting-Zhu
    Li, Liang
    Lanteri, Stephane
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 396 : 106 - 128
  • [2] Parametric POD-Galerkin Model Order Reduction for Unsteady-State Heat Transfer Problems
    Georgaka, Sokratia
    Stabile, Giovanni
    Rozza, Gianluigi
    Bluck, Michael J.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (01) : 1 - 32
  • [3] A NON-INTRUSIVE MODEL ORDER REDUCTION APPROACH FOR PARAMETERIZED TIME-DOMAIN MAXWELL'S EQUATIONS
    Li, Kun
    Huang, Ting-Zhu
    Li, Liang
    Zhao, Ying
    Lanteri, Stephane
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (01): : 449 - 473
  • [4] A reduced-order DG formulation based on POD method for the time-domain Maxwell's equations in dispersive media
    Li, Kun
    Huang, Ting-Zhu
    Li, Liang
    Lanteri, Stephane
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 336 : 249 - 266
  • [5] POD-Galerkin Model Order Reduction for Parametrized Nonlinear Time Dependent Optimal Flow Control: an Application to Shallow Water Equations
    Strazzullo, Maria
    Ballarin, Francesco
    Rozza, Gianluigi
    JOURNAL OF NUMERICAL MATHEMATICS, 2022, 30 (01) : 63 - 84
  • [6] The Discontinuous Galerkin Time-Domain method for Maxwell's equations with anisotropic materials
    Koenig, Michael
    Busch, Kurt
    Niegemann, Jens
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2010, 8 (04) : 303 - 309
  • [7] The Discontinuous Galerkin Finite-Element Time-Domain Method Solution of Maxwell's Equations
    Gedney, Stephen D.
    Luo, Chong
    Roden, J. Alan
    Crawford, Robert D.
    Guernsey, Bryan
    Miller, Jeffrey A.
    Kramer, Tyler
    Lucas, Eric W.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2009, 24 (02): : 129 - 142
  • [8] Convergence of a discontinuous Galerkin scheme for the mixed time-domain Maxwell's equations in dispersive media
    Lanteri, Stephane
    Scheid, Claire
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (02) : 432 - 459
  • [9] A High-Order Discontinuous Galerkin Method for the Two-Dimensional Time-Domain Maxwell's Equations on Curved Mesh
    Lu, Hongqiang
    Xu, Yida
    Gao, Yukun
    Qin, Wanglong
    Sun, Qiang
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2016, 8 (01) : 104 - 116
  • [10] Discontinuous Galerkin methods for Maxwell's equations in the time domain
    Cohen, Gary
    Ferrieres, Xavier
    Pernet, Sebastien
    COMPTES RENDUS PHYSIQUE, 2006, 7 (05) : 494 - 500