Graphene hydrogel-based counter electrode for high efficiency quantum dot-sensitized solar cells

被引:53
作者
Zhang, Hua [1 ]
Yang, Cheng [1 ]
Du, Zhonglin [1 ]
Pan, Dengyu [2 ]
Zhong, Xinhua [3 ]
机构
[1] East China Univ Sci & Technol, Shanghai Key Lab Funct Mat Chem, Sch Chem & Mol Engn, Shanghai 200237, Peoples R China
[2] Shanghai Univ, Inst Nanochem & Nanobiol, Shanghai 200444, Peoples R China
[3] South China Agr Univ, Coll Mat & Energy, 483 Wushan Rd, Guangzhou 510642, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
ONE-POT SYNTHESIS; OXIDE; PERFORMANCE; CARBON; FILM; PBS; NANOCOMPOSITES; CHALCOGENIDES; NANOCRYSTALS; STABILITY;
D O I
10.1039/c6ta08443e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although copper sulfide and/or carbon materials have been utilized in counter electrodes (CEs) due to their good catalytic activity and conductivity, the efficiency of the assembled quantum dot-sensitized solar cells (QDSCs) is still unsatisfactory because of the relatively low photovoltage (V-oc), which is commonly less than 0.7 V. In this study, graphene hydrogels (GHs) compressed onto titanium mesh served as the CE and the assembled CdSeTe QDSCs exhibited a photovoltaic conversion efficiency (PCE) of 9.85% and a V-oc as high as 0.756 V, which increased by 19.0% and 14.9%, respectively, and are higher than those of the conventional CuS on FTO. By incorporating CuS nanoparticles into GH during gelation, the as-prepared GH-CuS CEs show further improved performance and the maximum PCE and V-oc obtained were 10.71% and 0.786 V, respectively. The fill factor of the cells was also continuously increased. The excellent performance of the devices could be attributed to the synergistic effects of the water-rich GH (having a 3D porous structure accompanied by good conductivity) and highly catalytic CuS, reflected from the small series resistance, high catalytic activity, small electron transfer resistance, and stability, which have been confirmed by EIS, Tafel polarization, and CV curves.
引用
收藏
页码:1614 / 1622
页数:9
相关论文
共 52 条
[1]   A Facile One-Pot Synthesis of Copper Sulfide-Decorated Reduced Graphene Oxide Composites for Enhanced Detecting of H2O2 in Biological Environments [J].
Bai, Jing ;
Jiang, Xiue .
ANALYTICAL CHEMISTRY, 2013, 85 (17) :8095-8101
[2]   Synergistic Interaction of Dyes and Semiconductor Quantum Dots for Advanced Cascade Cosensitized Solar Cells [J].
Blas-Ferrando, Vicente M. ;
Ortiz, Javier ;
Gonzalez-Pedro, Victoria ;
Sanchez, Rafael S. ;
Mora-Sero, Ivan ;
Fernandez-Lazaro, Fernando ;
Sastre-Santos, Angela .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (21) :3220-3226
[3]   Understanding the Role of the Sulfide Redox Couple (S2-/Sn2-) in Quantum Dot-Sensitized Solar Cells [J].
Chakrapani, Vidhya ;
Baker, David ;
Kamat, Prashant V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (24) :9607-9615
[4]   Graphene-Based Nanomaterials: Synthesis, Properties, and Optical and Optoelectronic Applications [J].
Chang, Haixin ;
Wu, Hongkai .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (16) :1984-1997
[5]   Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst [J].
Chen, Sheng ;
Duan, Jingjing ;
Tang, Youhong ;
Jin, Bo ;
Qiao, Shi Zhang .
NANO ENERGY, 2015, 11 :11-18
[6]   Noncovalent functionalization of graphene with end-functional polymers [J].
Choi, Eun-Young ;
Han, Tae Hee ;
Hong, Jihyun ;
Kim, Ji Eun ;
Lee, Sun Hwa ;
Kim, Hyun Wook ;
Kim, Sang Ouk .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (10) :1907-1912
[7]   Robust hybrid hydrogels with good rectification properties and their application as active materials for dye-sensitized solar cells: insights from AC impedance spectroscopy [J].
Das, Sujoy ;
Chakraborty, Priyadarshi ;
Shit, Arnab ;
Mondal, Sanjoy ;
Nandi, Arun K. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (11) :4194-4210
[8]   Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6% [J].
Du, Jun ;
Du, Zhonglin ;
Hu, Jin-Song ;
Pan, Zhenxiao ;
Shen, Qing ;
Sung, Jiankun ;
Long, Donghui ;
Dong, Hui ;
Sun, Litao ;
Zhong, Xinhua ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (12) :4201-4209
[9]   Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11% [J].
Du, Zhonglin ;
Pan, Zhenxiao ;
Fabregat-Santiago, Francisco ;
Zhao, Ke ;
Long, Donghui ;
Zhang, Hua ;
Zhao, Yixin ;
Zhong, Xinhua ;
Yu, Jong-Sung ;
Bisquert, Juan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (16) :3103-3111
[10]   Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells [J].
Faber, Matthew S. ;
Park, Kwangsuk ;
Caban-Acevedo, Miguel ;
Santra, Pralay K. ;
Jin, Song .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (11) :1843-1849