Pig Model of Pulmonary Embolism: Where Is the Hemodynamic Break Point?

被引:10
作者
Kudlicka, J. [1 ,2 ,3 ]
Mlcek, M. [1 ]
Hala, P. [1 ,4 ]
Lacko, S. [1 ]
Janak, D. [1 ,3 ,5 ]
Hrachovina, M. [1 ]
Malik, J. [2 ,3 ]
Belohlavek, J. [3 ,6 ]
Neuzil, P. [4 ]
Kittnar, O. [1 ]
机构
[1] Charles Univ Prague, Fac Med 1, Inst Physiol, CR-11636 Prague 1, Czech Republic
[2] Charles Univ Prague, Fac Med 1, Dept Med 3, CR-11636 Prague 1, Czech Republic
[3] Gen Univ Hosp, Prague 12808, Czech Republic
[4] Na Homolce Hosp, Dept Cardiol, Prague, Czech Republic
[5] Charles Univ Prague, Fac Med 1, Dept Surg 2, Prague, Czech Republic
[6] Charles Univ Prague, Fac Med 1, Dept Med 2, Prague, Czech Republic
关键词
Pulmonary embolism; Hemodynamics; Shock; Pig model; EXTRACORPOREAL MEMBRANE-OXYGENATION; RIGHT-VENTRICULAR DYSFUNCTION; PLASMINOGEN-ACTIVATOR; EUROPEAN-SOCIETY; PROGNOSTIC VALUE; MANAGEMENT; ECHOCARDIOGRAPHY; ASSOCIATION; GUIDELINES; DIAGNOSIS;
D O I
10.33549/physiolres.932673
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Early recognition of collapsing hemodynamics in pulmonary embolism is necessary to avoid cardiac arrest using aggressive medical therapy or mechanical cardiac support. The aim of the study was to identify the maximal acute hemodynamic compensatory steady state. Overall, 40 dynamic obstructions of pulmonary artery were performed and hemodynamic data were collected. Occlusion of only left or right pulmonary artery did not lead to the hemodynamic collapse. When gradually obstructing the bifurcation, the right ventricle end-diastolic area expanded proportionally to pulmonary artery mean pressure from 11.6 (10.1, 14.1) to 17.8 (16.1, 18.8) cm(2) (p<0.0001) and pulmonary artery mean pressure increased from 22 (20, 24) to 44 (41, 47) mmHg (p<0.0001) at the point of maximal hemodynamic compensatory steady state. Similarly, mean arterial pressure decreased from 96 (87, 101) to 60 (53, 78) mmHg (p<0.0001), central venous pressure increased from 4 (4, 5) to 7 (6, 8) mmHg (p<0.0001), heart rate increased from 92 (88, 97) to 147 (122, 165) /min (p<0.0001), continuous cardiac output dropped from 5.2 (4.7, 5.8) to 4.3 (3.7, 5.0) l/min (p=0.0023), modified shock index increased from 0.99 (0.81, 1.10) to 2.31 (1.99, 2.72), p<0.0001. In conclusion, instead of continuous cardiac output all of the analyzed parameters can sensitively determine the individual maximal compensatory response to obstructive shock. We assume their monitoring can be used to predict the critical phase of the hemodynamic status in routine practice.
引用
收藏
页码:S173 / S179
页数:7
相关论文
共 50 条
  • [31] A Simple Clinical Model Composed of ECG, Shock Index, and Arterial Blood Gas Analysis for Predicting Severe Pulmonary Embolism
    Bircan, Ahmet
    Karadeniz, Nuriye
    Ozden, Ahmet
    Cakir, Munire
    Varol, Ercan
    Oyar, Orhan
    Ozaydin, Mehmet
    CLINICAL AND APPLIED THROMBOSIS-HEMOSTASIS, 2011, 17 (02) : 188 - 196
  • [32] A porcine model of massive, totally occlusive, pulmonary embolism
    Kjaergaard, Benedict
    Kristensen, Soren Risom
    Risom, Mads
    Larsson, Anders
    THROMBOSIS RESEARCH, 2009, 124 (02) : 226 - 229
  • [33] SpO2/FIO2 on Presentation as a Predictor for Early Hemodynamic Deterioration in Intermediate Risk Acute Pulmonary Embolism
    Domaradzki, Lisa
    Ghahramani, Mehrdad
    Rogers, Ryan
    Ruzieh, Mohammed
    Wilson, Ryan
    Van de Louw, Andry
    RESPIRATORY CARE, 2019, 64 (10) : 1279 - 1285
  • [34] Management of high-risk pulmonary embolism in an "unstable medical environment": Not only a matter of hemodynamic
    Zuin, Marco
    Barco, Stefano
    Zuliani, Giovanni
    Roncon, Loris
    THROMBOSIS RESEARCH, 2020, 195 : 193 - 194
  • [35] Development of a machine learning model using electrocardiogramsignals to improve acute pulmonary embolism screening
    Somani, Sulaiman S.
    Honarvar, Hossein
    Narula, Sukrit
    Landi, Isotta
    Lee, Shawn
    Khachatoorian, Yeraz
    Rehmani, Arsalan
    Kim, Andrew
    De Freitas, Jessica K.
    Teng, Shelly
    Jaladanki, Suraj
    Kumar, Arvind
    Russak, Adam
    Zhao, Shan P.
    Freeman, Robert
    Levin, Matthew A.
    Nadkarni, Girish N.
    Kagen, Alexander C.
    Argulian, Edgar
    Glicksberg, Benjamin S.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2022, 3 (01): : 56 - 66
  • [36] Diagnostic Performance of Wells Score Combined With Point-of-care Lung and Venous Ultrasound in Suspected Pulmonary Embolism
    Nazerian, Peiman
    Volpicelli, Giovanni
    Gigli, Chiara
    Becattini, Cecilia
    Papa, Giuseppe Francesco Sferrazza
    Grifoni, Stefano
    Vanni, Simone
    ACADEMIC EMERGENCY MEDICINE, 2017, 24 (03) : 270 - 280
  • [37] Point-of-care ultrasound in the diagnosis of pulmonary embolism
    Squizzato A.
    Galli L.
    Gerdes V.E.A.
    Critical Ultrasound Journal, 2015, 7 (1)
  • [38] POINT-OF-CARE ULTRASOUND FOR SUBMASSIVE PULMONARY EMBOLISM
    Quach, Amanda N.
    Hightower, Stephen C.
    Goldenberg, William D.
    Lopez, Jason J.
    JOURNAL OF EMERGENCY MEDICINE, 2021, 60 (02) : 248 - 250
  • [39] Prospective validation of the Pulmonary Embolism Severity Index A clinical prognostic model for pulmonary embolism
    Donze, Jacques
    Le Gal, Gregoire
    Fine, Michael J.
    Roy, Pierre-Marie
    Sanchez, Olivier
    Verschuren, Franck
    Cornuz, Jacques
    Meyer, Guy
    Perrier, Arnaud
    Righini, Marc
    Aujesky, Drahomir
    THROMBOSIS AND HAEMOSTASIS, 2008, 100 (05) : 943 - 948
  • [40] Vasoactive peptides in a pulmonary embolism model
    Takamori, S
    Mifune, H
    Sakamoto, H
    Hayashi, A
    Terazaki, Y
    Miwa, K
    Fukunaga, M
    Shirouzu, K
    SURGERY TODAY, 2002, 32 (08) : 707 - 710