Pig Model of Pulmonary Embolism: Where Is the Hemodynamic Break Point?

被引:10
|
作者
Kudlicka, J. [1 ,2 ,3 ]
Mlcek, M. [1 ]
Hala, P. [1 ,4 ]
Lacko, S. [1 ]
Janak, D. [1 ,3 ,5 ]
Hrachovina, M. [1 ]
Malik, J. [2 ,3 ]
Belohlavek, J. [3 ,6 ]
Neuzil, P. [4 ]
Kittnar, O. [1 ]
机构
[1] Charles Univ Prague, Fac Med 1, Inst Physiol, CR-11636 Prague 1, Czech Republic
[2] Charles Univ Prague, Fac Med 1, Dept Med 3, CR-11636 Prague 1, Czech Republic
[3] Gen Univ Hosp, Prague 12808, Czech Republic
[4] Na Homolce Hosp, Dept Cardiol, Prague, Czech Republic
[5] Charles Univ Prague, Fac Med 1, Dept Surg 2, Prague, Czech Republic
[6] Charles Univ Prague, Fac Med 1, Dept Med 2, Prague, Czech Republic
关键词
Pulmonary embolism; Hemodynamics; Shock; Pig model; EXTRACORPOREAL MEMBRANE-OXYGENATION; RIGHT-VENTRICULAR DYSFUNCTION; PLASMINOGEN-ACTIVATOR; EUROPEAN-SOCIETY; PROGNOSTIC VALUE; MANAGEMENT; ECHOCARDIOGRAPHY; ASSOCIATION; GUIDELINES; DIAGNOSIS;
D O I
10.33549/physiolres.932673
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Early recognition of collapsing hemodynamics in pulmonary embolism is necessary to avoid cardiac arrest using aggressive medical therapy or mechanical cardiac support. The aim of the study was to identify the maximal acute hemodynamic compensatory steady state. Overall, 40 dynamic obstructions of pulmonary artery were performed and hemodynamic data were collected. Occlusion of only left or right pulmonary artery did not lead to the hemodynamic collapse. When gradually obstructing the bifurcation, the right ventricle end-diastolic area expanded proportionally to pulmonary artery mean pressure from 11.6 (10.1, 14.1) to 17.8 (16.1, 18.8) cm(2) (p<0.0001) and pulmonary artery mean pressure increased from 22 (20, 24) to 44 (41, 47) mmHg (p<0.0001) at the point of maximal hemodynamic compensatory steady state. Similarly, mean arterial pressure decreased from 96 (87, 101) to 60 (53, 78) mmHg (p<0.0001), central venous pressure increased from 4 (4, 5) to 7 (6, 8) mmHg (p<0.0001), heart rate increased from 92 (88, 97) to 147 (122, 165) /min (p<0.0001), continuous cardiac output dropped from 5.2 (4.7, 5.8) to 4.3 (3.7, 5.0) l/min (p=0.0023), modified shock index increased from 0.99 (0.81, 1.10) to 2.31 (1.99, 2.72), p<0.0001. In conclusion, instead of continuous cardiac output all of the analyzed parameters can sensitively determine the individual maximal compensatory response to obstructive shock. We assume their monitoring can be used to predict the critical phase of the hemodynamic status in routine practice.
引用
收藏
页码:S173 / S179
页数:7
相关论文
共 50 条
  • [1] Submassive Pulmonary Embolism: Where's the Tipping Point?
    Clark, Donald, III
    McGiffin, David C.
    Dell'Italia, Louis J.
    Ahmed, Mustafa I.
    CIRCULATION, 2013, 127 (24) : 2458 - 2464
  • [2] Hemodynamic and respiratory support in pulmonary embolism: a narrative review
    Perez-Nieto, Orlando Ruben
    Gomez-Oropeza, Irene
    Quintero-Leyra, Andres
    Kammar-Garcia, Ashuin
    Zamarron-Lopez, Eder Ivan
    Soto-Estrada, Maximiliano
    Morgado-Villasenor, Luis Antonio
    Meza-Comparan, Hector David
    FRONTIERS IN MEDICINE, 2023, 10
  • [3] Hemodynamic decompensation in normotensive patients admitted to the ICU with pulmonary embolism
    Patel, Het
    Shih, Jenny A.
    Gardner, Ryan
    Patel, Parth, V
    Ross, Catherine
    Hayes, Margaret M.
    Moskowitz, Ari
    Donnino, Michael W.
    JOURNAL OF CRITICAL CARE, 2019, 54 : 105 - 109
  • [4] From acute pulmonary embolism to post-pulmonary embolism sequelae: Functional and hemodynamic implications
    Farmakis, Ioannis T.
    Keller, Karsten
    Barco, Stefano
    Konstantinides, Stavros, V
    Hobohm, Lukas
    VASA-EUROPEAN JOURNAL OF VASCULAR MEDICINE, 2023, 52 (01) : 29 - 37
  • [5] Initial hemodynamic status and Acute Mortality in Cancer patients with Acute Pulmonary Embolism: from the COMMAND VTE Registry
    Xiong, Wei
    Yamashita, Yugo
    Morimoto, Takeshi
    Takase, Toru
    Hiramori, Seiichi
    Kim, Kitae
    Oi, Maki
    Akao, Masaharu
    Kobayashi, Yohei
    Chen, Po-Min
    Murata, Koichiro
    Tsuyuki, Yoshiaki
    Nishimoto, Yuji
    Sakamoto, Jiro
    Togi, Kiyonori
    Mabuchi, Hiroshi
    Takabayashi, Kensuke
    Kato, Takao
    Ono, Koh
    Kimura, Takeshi
    JOURNAL OF THROMBOSIS AND THROMBOLYSIS, 2024, 57 (07) : 1183 - 1192
  • [6] Predictive ability of the new 2014 ESC prognostic model in acute pulmonary embolism
    Masotti, Luca
    Panigada, Grazia
    Landini, Giancarlo
    Pieralli, Filippo
    Corradi, Francesco
    Lenti, Salvatore
    Migliacci, Rino
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2016, 202 : 801 - 803
  • [7] Establishment of a canine model of acute pulmonary embolism with definite right ventricular dysfunction through introduced autologous blood clots
    Zhao, Lin-Bo
    Jia, Zhen-Yu
    Lu, Guang-Dong
    Zhu, Yin-Su
    Jing, Lei
    Shi, Hai-Bin
    THROMBOSIS RESEARCH, 2015, 135 (04) : 727 - 732
  • [8] Short-term effects of fibrinolytic therapy on the hemodynamic parameters of patients with intermediate- and high-risk pulmonary embolism
    Cildir, Hamza
    Aksay, Ersin
    Sanci, Emre
    Bayram, Basak
    Colak, Nese
    Sevinc, Can
    CLINICAL AND EXPERIMENTAL EMERGENCY MEDICINE, 2022, 9 (01): : 47 - 53
  • [9] The Use of Hemodynamic Support in Massive Pulmonary Embolism
    Bhatia, Neal Kumar
    Dickert, Neal W.
    Samady, Habib
    Babaliaros, Vasilis
    CATHETERIZATION AND CARDIOVASCULAR INTERVENTIONS, 2017, 90 (03) : 516 - 520
  • [10] Diagnostic Accuracy of Point-of-Care Ultrasound Performed by Pulmonary Critical Care Physicians for Right Ventricle Assessment in Patients With Acute Pulmonary Embolism*
    Filopei, Jason
    Acquah, Samuel O.
    Bondarsky, Eric E.
    Steiger, David J.
    Ramesh, Navitha
    Ehrlich, Madeline
    Patrawalla, Paru
    CRITICAL CARE MEDICINE, 2017, 45 (12) : 2040 - 2045