Oxidant-Induced High-Efficient Mussel-Inspired Modification on PVDF Membrane with Superhydrophilicity and Underwater Superoleophobicity Characteristics for Oil/Water Separation

被引:136
|
作者
Luo, Chongdan [1 ]
Liu, Qingxia [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Donadeo Innovat Ctr Engn, Edmonton, AB T6G 1H9, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
polydopamine; microfiltration; superhydrophilicity; underwater superoleophobicity; oil/water separation; SURFACE MODIFICATION; POLYMER MEMBRANES; OIL; WATER; POLYDOPAMINE; HYDROPHILICITY; PLASMA; FABRICATION; POLY(DOPA); PROGRESS;
D O I
10.1021/acsami.6b16206
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, a facile one-step approach was developed to modify hydrophobic polyvinylidene fluoride (PVDF) microfiltration membrane with superhydrophilicity and underwater superoleophobicity properties via a high-efficient deposition of polydopamine (PDA) coating oxidized by sodium periodate in a slightly acidic environment (pH = 5.0). In contrast to the traditional PDA coating on hydrophobic membranes autoxidized by O-2 in a weak basic buffer solution, the superhydrophilicity and ultrahigh pure water permeability (about 11 934 L m(-2) h(-1) under 0.038 MPa) of the PDA-decorated PVDF membrane are derived from optimized chemical oxidation without postmoclifications or additional reactants. The as-prepared membrane exhibits excellent oil/water separation ability evaluated by water fluxes and oil rejection ratios of various oil/water mixtures and oil-in-water emulsions. Moreover, the outstanding antifouling performance and reusability of the PDA-modified PVDF membrane provide a long-term durability for many potential applications. The modified membrane also exhibits excellent chemical stability in harsh pH environments and mechanical stability for practical applications.
引用
收藏
页码:8297 / 8307
页数:11
相关论文
共 50 条
  • [41] Mussel-inspired modification of PTFE membranes in a miscible THF-Tris buffer mixture for oil-in-water emulsions separation
    Li, Xipeng
    Shan, Huiting
    Cao, Min
    Li, Baoan
    JOURNAL OF MEMBRANE SCIENCE, 2018, 555 : 237 - 249
  • [42] A mussel inspired highly stable graphene oxide membrane for efficient oil-in-water emulsions separation
    Liu, Zhanchao
    Wu, Weifu
    Liu, Yan
    Qin, Changchun
    Meng, Minjia
    Jiang, Yinhua
    Qiu, Jian
    Peng, Jianbo
    SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 199 : 37 - 46
  • [43] Underwater superoleophobic PVDF membrane with robust stability for highly efficient oil-in-water emulsion separation
    Zhong, Qi
    Sun, Qing
    Xiang, Bin
    Mu, Peng
    Li, Jian
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (23) : 11232 - 11241
  • [44] Surface chemistry-dominated underwater superoleophobic mesh with mussel-inspired zwitterionic coatings for oil/water separation and self-cleaning
    Chen, Xiaolu
    Zhai, Yadan
    Han, Xia
    Liu, Honglai
    Hu, Ying
    APPLIED SURFACE SCIENCE, 2019, 483 : 399 - 408
  • [45] Anti-oil fouling poly(vinylidene fluoride) membrane with excellent underwater superoleophobicity and high-efficient photo-Fenton oxidation for oily water purification
    Zhu, Lijing
    Wang, Yi
    Yang, Hao
    Wang, Gang
    Wang, Jianqiang
    Zeng, Zhixiang
    MATERIALS LETTERS, 2023, 348
  • [46] UiO-66-Coated Mesh Membrane with Underwater Superoleophobicity for High-Efficiency Oil-Water Separation
    Zhang, Xiaojing
    Zhao, Yuxin
    Mu, Shanjun
    Jiang, Chunming
    Song, Mingqiu
    Fang, Qianrong
    Xue, Ming
    Qiu, Shilun
    Chen, Banglin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (20) : 17301 - 17308
  • [47] Alkaline-induced superhydrophilic/underwater superoleophobic polyacrylonitrile membranes with ultralow oil-adhesion for high-efficient oil/water separation
    Zhang, Feng
    Gao, Shoujian
    Zhu, Yuzhang
    Jin, Jian
    JOURNAL OF MEMBRANE SCIENCE, 2016, 513 : 67 - 73
  • [48] Versatile and robust poly(ionic liquid) coatings with intelligent superhydrophilicity/superhydrophobicity switch in high-efficient oil-water separation
    Wei, Ran
    Yang, Bo
    He, Chao
    Jin, Lunqiang
    Zhang, Xiang
    Zhao, Changsheng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 282
  • [49] One-step modification of PVDF membrane with tannin-inspired highly hydrophilic and underwater superoleophobic coating for effective oil-in-water emulsion separation
    Jiang, Bin
    Cheng, Kai
    Zhang, Na
    Yang, Na
    Zhang, Luhong
    Sun, Yongli
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 255
  • [50] Modified superhydrophilic and underwater superoleophobic PVDF membrane with ultralow oil-adhesion for highly efficient oil/water emulsion separation
    Liu, Jun
    Li, Peng
    Chen, Li
    Feng, Yang
    He, Wanxia
    Lv, Xiaomeng
    MATERIALS LETTERS, 2016, 185 : 169 - 172