Quasisimple classical groups and their complex group algebras

被引:8
|
作者
Hung Ngoc Nguyen [1 ]
机构
[1] Univ Akron, Dept Math, Akron, OH 44325 USA
关键词
CHARACTER DEGREES; FINITE-GROUPS; REPRESENTATIONS;
D O I
10.1007/s11856-012-0142-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a finite quasisimple classical group, i.e., H is perfect and S:= H/Z(H) is a finite simple classical group. We prove that, excluding the open cases when S has a very exceptional Schur multiplier such as PSL3(4) or PSU4(3), H is uniquely determined by the structure of its complex group algebra. The proofs make essential use of the classification of finite simple groups as well as the results on prime power character degrees and relatively small character degrees of quasisimple classical groups.
引用
收藏
页码:973 / 998
页数:26
相关论文
共 50 条
  • [1] Characterizing Finite Quasisimple Groups by Their Complex Group Algebras
    Hung Ngoc Nguyen
    Tong-Viet, Hung P.
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (01) : 305 - 320
  • [2] Complex group algebras of almost simple groups with socle PSLn(q)
    Shirjian, Farrokh
    Iranmanesh, Ali
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (02) : 552 - 573
  • [3] Complex group algebras of almost simple unitary groups
    Shirjian, Farrokh
    Iranmanesh, Ali
    Shafiei, Farideh
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (05) : 1919 - 1940
  • [4] Nilpotent blocks of quasisimple groups for odd primes
    An, Jianbei
    Eaton, Charles W.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 656 : 131 - 177
  • [5] Complex group algebras of the double covers of the symmetric and alternating groups
    Bessenrodt, Christine
    Hung Ngoc Nguyen
    Olsson, Jorn B.
    Tong-Viet, Hung P.
    ALGEBRA & NUMBER THEORY, 2015, 9 (03) : 601 - 628
  • [6] Commutators in finite quasisimple groups
    Liebeck, Martin W.
    O'Brien, E. A.
    Shalev, Aner
    Pham Huu Tiep
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 : 1079 - 1092
  • [7] Bases for quasisimple linear groups
    Lee, Melissa
    Liebeck, Martin W.
    ALGEBRA & NUMBER THEORY, 2018, 12 (06) : 1537 - 1557
  • [8] SCHUR ALGEBRAS OF CLASSICAL GROUPS II
    Liu, Qunhua
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (07) : 2656 - 2676
  • [9] Complex group algebras of finite groups:: Brauer's problem 1
    Moreto, Alexander
    ADVANCES IN MATHEMATICS, 2007, 208 (01) : 236 - 248
  • [10] DOUBLE PIERI ALGEBRAS AND ITERATED PIERI ALGEBRAS FOR THE CLASSICAL GROUPS
    Howe, Roger
    Kim, Sangjib
    Lee, Soo Teck
    AMERICAN JOURNAL OF MATHEMATICS, 2017, 139 (02) : 347 - 401