Influence of flow conditions on the corrosion of AISI 304L stainless steel

被引:84
|
作者
Wharton, JA [1 ]
Wood, RJK [1 ]
机构
[1] Univ Southampton, Sch Engn Sci, Surface Engn & Tribol Grp, Southampton SO17 1BJ, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
stainless steel; flow-induced corrosion; Reynolds number; metastable pitting; electrochemical measurements; pipe flow; hydrodynamic regimes;
D O I
10.1016/S0043-1648(03)00562-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Hydrodynamic and electrochemical noise measurements (ENMs), of AISI 304L stainless steel, were made in a pipe test section of 28 mm inside diameter for a range of flow regimes from laminar to turbulent. Mean flow velocities through the test section were controlled at 0.04, 0.07, 0.11, 0.36, 1.8 and 2.7 m s(-1), equivalent to Reynolds numbers of 1000, 2000, 3000, 10 000, 50 000 and 75 000, respectively. Standard hydrodynamic parameters were employed to characterise and evaluate the complex interrelationship between the mass transfer rate of oxygen and momentum transfer through turbulence to the metal/solution interface. For AISI 304L stainless steel, pitting typically occurs in the form of metastable pits which either repassivated before achieving stability or grow to become stable pits. Metastable pitting was evident under all flow regimes. The fluid flow, whether laminar or turbulent, had little overall effect on the nucleation rates of metastable pitting events. Conversely, stable pit growth was most evident during laminar flow immediately before the transition to turbulent flow and close to the critical velocity (similar to1.5 m s(-1)). (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:525 / 536
页数:12
相关论文
共 50 条
  • [21] Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance
    Pacquentin, Wilfried
    Caron, Nadege
    Oltra, Roland
    APPLIED SURFACE SCIENCE, 2014, 288 : 34 - 39
  • [22] Oxidation of AISI 304L stainless steel surface with atomic oxygen
    Vesel, A
    Mozetic, M
    Zalar, A
    APPLIED SURFACE SCIENCE, 2002, 200 (1-4) : 94 - 103
  • [23] Elevated temperature material characteristics of AISI 304L stainless steel
    Towfighi, S.
    Romilly, D. P.
    Olson, J. A.
    MATERIALS AT HIGH TEMPERATURES, 2013, 30 (02) : 151 - 155
  • [24] Fracture failure analysis of AISI 304L stainless steel shaft
    Zangeneh, Sh.
    Ketabchi, M.
    Kalaki, A.
    ENGINEERING FAILURE ANALYSIS, 2014, 36 : 155 - 165
  • [25] A STUDY ON CREVICE CORROSION OF AISI 316L, AISI 304L AND AISI 444 STAINLESS STEELS
    Bellezze, T.
    Quaranta, A.
    Roventi, G.
    Fratesi, R.
    METALLURGIA ITALIANA, 2008, (01): : 7 - 11
  • [26] Predicting microstructure and strength for AISI 304L stainless steel forgings
    Switzner, N. T.
    Sawyer, E. T.
    Everhart, W. A.
    Hanlin, R. L.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 745 : 474 - 483
  • [27] Development and Characterization of Cladding AISI 304L Stainless Steel on Aluminum
    Gabsi, Yasmine
    Zouari, Sahar
    Abdennadher, Mariem
    Dieng, Lamine
    Elleuch, Riadh
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2025, 9 (02):
  • [28] THE THERMAL-CONDUCTIVITY OF AISI 304L STAINLESS-STEEL
    GRAVES, RS
    KOLLIE, TG
    MCELROY, DL
    GILCHRIST, KE
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1991, 12 (02) : 409 - 415
  • [29] Electrochemical behaviour of an AISI 304L stainless steel implanted with nitrogen
    Abreu, C. M.
    Cristobal, M. J.
    Merino, P.
    Novoa, X. R.
    Pena, G.
    Perez, M. C.
    ELECTROCHIMICA ACTA, 2008, 53 (20) : 6000 - 6007
  • [30] Ductile fracture of AISI 304L stainless steel sheet in stretching
    Ben Othmen, Khadija
    Haddar, Nader
    Jegat, Anthony
    Manach, Pierre-Yves
    Elleuch, Khaled
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 172