Generalized synchronization and coherent structures in spatially extended systems

被引:8
作者
Basnarkov, Lasko [1 ,3 ]
Duane, Gregory S. [2 ,3 ]
Kocarev, Ljupco [1 ,3 ,4 ]
机构
[1] SS Cyril & Methodius Univ, Fac Comp Sci & Engn, Skopje, Macedonia
[2] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[3] Macedonian Acad Sci & Arts, Skopje, Macedonia
[4] Univ Calif San Diego, BioCircuits Inst, San Diego, CA 92103 USA
关键词
SPATIOTEMPORAL CHAOS; DATA ASSIMILATION; EQUATIONS;
D O I
10.1016/j.chaos.2013.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the synchronization of a coupled pair of one-dimensional Kuramoto-Sivashinsky systems, with equations augmented by a third-space-derivative term. With two different values of a system parameter, the two systems synchronize in the generalized sense. The phenomenon persists even in the extreme case when one of the equations is missing the extra term. Master-slave synchronization error is small, so the generalized synchronization relationship is useful for predicting the state of the master from that of the slave, or conversely, for controlling the slave. The spatial density of coupling points required to bring about generalized synchronization appears to be related to the wavelength of traveling wave solutions, and more generally to the width of coherent structures in the separate systems. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:35 / 41
页数:7
相关论文
共 32 条
[1]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[2]   Synchronization based system identification of an extended excitable system [J].
Berg, S. ;
Luther, S. ;
Parlitz, U. .
CHAOS, 2011, 21 (03)
[3]   Synchronization in nonidentical extended systems [J].
Boccaletti, S ;
Bragard, J ;
Arecchi, FT ;
Mancini, H .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :536-539
[4]   Spatiotemporal chaos in terms of unstable recurrent patterns [J].
Christiansen, F ;
Cvitanovic, P ;
Putkaradze, V .
NONLINEARITY, 1997, 10 (01) :55-70
[5]  
Cvitanovic P., 2009, CHAOS CLASSICAL QUAN
[6]   Synchronicity in predictive modelling: a new view of data assimilation [J].
Duane, G. S. ;
Tribbia, J. J. ;
Weiss, J. B. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2006, 13 (06) :601-612
[7]   Synchronization of extended systems from internal coherence [J].
Duane, Gregory S. .
PHYSICAL REVIEW E, 2009, 80 (01)
[8]  
Duane GS, 2004, J ATMOS SCI, V61, P2149, DOI 10.1175/1520-0469(2004)061<2149:WATASC>2.0.CO
[9]  
2
[10]   Synchronized chaos in geophysical fluid dynamics [J].
Duane, GS ;
Tribbia, JJ .
PHYSICAL REVIEW LETTERS, 2001, 86 (19) :4298-4301