REPRODUCING KERNELS OF WEIGHTED POLY-BERGMAN SPACES ON THE UPPER HALF-PLANE

被引:0
作者
Ortega, Josue Ramirez [1 ]
机构
[1] Univ Veracruzana, Fac Matemat, Xalapa 91000, Veracruz, Mexico
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2007年 / 13卷 / 02期
关键词
poly-Bergman spaces; reproducing kernels;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Pi be the upper half-plane. The weighted poly-Bergman spaces on Pi consist of all functions on L-2(Pi, (lambda+ 1)(2y)(lambda)dx dy) satisfying the equation (partial derivative/partial derivative(z) over bar)(n)f = 0. Reproducing kernels of the weighted poly-Bergman spaces are obtained via the Fourier transform.
引用
收藏
页码:345 / 356
页数:12
相关论文
共 9 条
[1]  
Bergman S., 1970, The kernel function and conformal mapping
[2]  
Chihara T.S., 1978, An Introduction to Orthogonal Polynomials, V13
[3]  
Dzuraev A., 1992, Methods of Singular Integral Equations
[4]  
Lebedev N., 1972, SPECIAL FUNCTION THE
[5]  
Mikhlin SG., 1986, SINGULAR INTEGRAL OP
[6]  
RAMIREZ J, 2003, P C HON PROF G LITV
[7]  
Vasilevski N, 2007, OPER THEOR, V171, P349
[8]   On the structure of Bergman and poly-Bergman spaces [J].
Vasilevski, NL .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1999, 33 (04) :471-488
[9]  
[No title captured]