Stability of the General Mixed Additive and Quadratic Functional Equation in Quasi Banach Spaces

被引:0
作者
Kaskasem, Prondanai [1 ]
Klin-eam, Chakkrid [1 ,2 ]
Noytabtim, Boriwat [1 ]
机构
[1] Naresuan Univ, Fac Sci, Dept Math, Phitsanulok 65000, Thailand
[2] Naresuan Univ, Res Ctr Acad Excellence Math, Phitsanulok 65000, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2020年 / 18卷 / 03期
关键词
Hyers-Ulam-Rassias stability; additive functional equation; quadratic functional equation; general mixed additive and quadratic functional equation; quasi Banach spaces;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the following general mixed additive and quadratic functional equation f(lambda x + y) + f(lambda x - y) = f(x + y) + f(x - y) + (lambda - 1)[(lambda + 2) f(x) + lambda f(-x)] where lambda is an element of N and lambda not equal 1 in quasi Banach spaces. Moreover, we use contractive subadditive and expansively superadditive function to prove stability of the general mixed additive and quadratic functional equation in quasi Banach spaces.
引用
收藏
页码:1299 / 1322
页数:24
相关论文
共 17 条
[1]  
Alizadeh Z, 2016, J FIX POINT THEORY A, V18, P843, DOI 10.1007/s11784-016-0317-9
[2]  
[Anonymous], 2018, MATH ANAL ITS APPL
[3]  
[Anonymous], 1960, COLLECTION MATH PROB
[4]  
Aoki T., 1942, Proc. Imp. Acad. Tokyo, V18, P588
[5]   RECENT DEVELOPMENTS OF THE CONDITIONAL STABILITY OF THE HOMOMORPHISM EQUATION [J].
Brzdek, Janusz ;
Fechner, Wlodzimierz ;
Moslehian, Mohammad Sal ;
Sikorska, Justyna .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (03) :278-326
[6]   Generalized Hyers-Ulam Stability for a General Mixed Functional Equation in Quasi-β-normed Spaces [J].
Eskandani, G. Zamani ;
Gavruta, Pasc ;
Rassias, John M. ;
Zarghami, Ramazan .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2011, 8 (03) :331-348
[7]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[8]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[9]  
Kalton N. J., 1984, LONDON MATH SOC LECT, V89
[10]  
Maligranda L., 2008, INT S BAN FUNCT SPAC, P1