A multiscale thermomechanical model for cubic to tetragonal martensitic phase transformations

被引:87
作者
Turteltaub, S [1 ]
Suiker, ASJ [1 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn, NL-2629 HS Delft, Netherlands
关键词
phase transformation; multiscale; martensite; austenite; driving force;
D O I
10.1016/j.ijsolstr.2005.06.065
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We develop a multiscale thermomechanical model to analyze martensitic phase transformations from a cubic crystalline lattice to a tetragonal crystalline lattice. The model is intended for simulating the thermomechanical response of single-crystal grains of austenite. Based on the geometrically nonlinear theory of martensitic transformations, we incorporate microstructural effects from several subgrain length scales. The effective stiffness tensor at the grain level is obtained through an averaging scheme, and preserves crystallographic information from the lattice scale as well as the influence of volumetric changes due to the transformation. The model further incorporates a transformation criterion that includes a surface energy term, which takes into account the creation of interfaces between martensite and austenite. These effects, which are often neglected in martensitic transformation models, thus appear explicitly in the expression of the transformation driving force that controls the onset and evolution of the transformation. In the derivation of the transformation driving force, we clarify the relations between different combinations of thermodynamic potentials and state variables. The predictions of the model are illustrated by analyzing the response of a phase-changing material subjected to various types of deformations. Although the model is developed for cubic to tetragonal transformations, it can be adapted to simulate martensitic transformations for other crystalline structures. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4509 / 4545
页数:37
相关论文
共 50 条
[21]   On the Three Phase Mixtures in Martensitic Transformations of Shape Memory Alloys: Thermodynamical Modeling and Characteristic Temperatures [J].
Y. Huo ;
X. Zu .
Continuum Mechanics and Thermodynamics, 1998, 10 :179-188
[22]   Interfacial energy and dissipation in martensitic phase transformations. Part II: Size effects in pseudoelasticity [J].
Petryk, H. ;
Stupkiewicz, S. ;
Maciejewski, G. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2010, 58 (03) :373-389
[23]   Effect of microscale shear stresses on the martensitic phase transformation of nanocrystalline tetragonal zirconia powders [J].
Skovgaard, Mette ;
Ahniyaz, Anwar ;
Sorensen, Bent F. ;
Almdal, Kristoffer ;
van Lelieveld, Alexander .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2010, 30 (13) :2749-2755
[24]   A phase field approach for multivariant martensitic transformations of stable and metastable phases [J].
Regina Schmitt ;
Ralf Müller ;
Charlotte Kuhn ;
Herbert M. Urbassek .
Archive of Applied Mechanics, 2013, 83 :849-859
[25]   Phase Transformations in Martensitic Steels Tested for High-Temperature Fatigue [J].
L. V. Tarasenko ;
G. V. Soboleva .
Metal Science and Heat Treatment, 2002, 44 :111-115
[26]   A phase field approach for multivariant martensitic transformations of stable and metastable phases [J].
Schmitt, Regina ;
Mueller, Ralf ;
Kuhn, Charlotte ;
Urbassek, Herbert M. .
ARCHIVE OF APPLIED MECHANICS, 2013, 83 (06) :849-859
[27]   A phase-field study of the physical concepts of martensitic transformations in steels [J].
Yeddu, Hemantha Kumar ;
Borgenstam, Annika ;
Hedstrom, Peter ;
Agren, John .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 538 :173-181
[28]   Thermal stability and phase transformations of martensitic Ti-Nb alloys [J].
Boenisch, Matthias ;
Calin, Mariana ;
Waitz, Thomas ;
Panigrahi, Ajit ;
Zehetbauer, Michael ;
Gebert, Annett ;
Skrotzki, Werner ;
Eckert, Juergen .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2013, 14 (05)
[29]   Dissipative processes during the nonequilibrium phase transformations in martensitic thermoelastic alloys [J].
Shakhnazarov, T. A. ;
Kamilov, I. K. ;
Sinani, A. B. ;
Luguev, T. S. .
TECHNICAL PHYSICS, 2010, 55 (07) :946-952
[30]   Self-Assembled Periodic Nanostructures Using Martensitic Phase Transformations [J].
Prakash, Abhinav ;
Wang, Tianqi ;
Bucsek, Ashley ;
Truttmann, Tristan K. ;
Fali, Alireza ;
Cotrufo, Michele ;
Yun, Hwanhui ;
Kim, Jong-Woo ;
Ryan, Philip J. ;
Mkhoyan, K. Andre ;
Alu, Andrea ;
Abate, Yohannes ;
James, Richard D. ;
Jalan, Bharat .
NANO LETTERS, 2021, 21 (03) :1246-1252